**the enormous success of mathematics in the natural**

sciences is something bordering on the mysterious and ...

there is no natural explanation for it.

sciences is something bordering on the mysterious and ...

there is no natural explanation for it.

The 171st day of the year; 171 has the same number of digits in Roman numerals as its cube.

**1686**Halley Writes to Newton that Hooke has protested his "discovery" of the inverse square law should be noted in Principia. Newton will respond On July 14, 1686, with a peace offering; "And now having sincerely told you the case between Mr Hooke and me, I hope I shall be free for the future from the prejudice of his letters. I have considered how best to compose the present dispute, and I think it may be done by the inclosed scholium to the fourth proposition." This scholium was "The inverse law of gravity holds in all the celestial motions, as was discovered also independently by my countrymen Wren, Hooke and Halley."

**1688**Newton, in a letter to Edmund Halley, again expresses his exasperation with carping critics. [Thanks to Howard Eves]*VFR

**1788;**Washington Writes to Nicholas Pike to Thank him for a copy of his "A New and Complete System of Arithmetic" , published in 1786 by Nicholas Pike, a Newburyport schoolmaster. In his letter, sent June 20, 1788, from Mount Vernon, Washington writes: "The handsome manner in which that Work is printed and the elegant manner in which it is bound, are pleasing proofs of the progress which the Arts are making in this Country. Washington's letter to Pike also commended him on his accomplishments and the importance of his work.

Pike had written to Washington on March 25,1786 requesting permission to dedciate the book to Washington. On June 20 of 1786, Washington had replied that, "I must therefore beg leave to decline the honour which you would do me, as I have before done in two or three cases of a similar kind."

**1808**Poisson submitted his ﬁrst paper on the stability of the planetary system, one day before his twenty-seventh birthday. *VFR

**1831**János Bolyai's pioneering work, The Absolutely True Science of Space, was published in 1832. This important work was published as an appendix to the first volume of his father,Farkas Bolyai's Tentamen , but its off-print had already been ready the previous year, in April 1831. The latter was the version which, together with a letter, was sent to Gauss by Farkas Bolyai on the 20th of June 1831. Gauss got the letter but János's work was lost on the way. On the 16th of January 1832 Farkas sent the Appendix to his friend again with another letter in which he wrote: ``My son appreciates Your critique more than that of whole Europe and it is the only thing he is waiting for''.

After twenty-three years of silence, Gauss replied to his ``old, unforgettable friend'' on the 6th of March 1832. One of his well-known sentences was: ``if I praised your son's work I would praise myself''. The letter deeply afflicted and upset János Bolyai, although it reflects appreciation, too: ``... I am very glad that it is my old friend's son who so splendidly preceded me'' *Komal Journal

**1877**Georg Cantor, in a letter to Dedekind, announced a proof that the points inside a square are in one-to-one correspondence with those on a line segment. Three years earlier, Cantor had intimated that this was clearly impossible. *VFR

**1908**Count Zeppelin made his first flight in his fourth new airship at Friedrichshafen, Germany. The Luftschiff LZ4 had its first flight 20 Jun 1908. Its first extended flight (12 hours) was taken to Switzerland 1 Jul 1908. At the beginning of August, it embarked on an extended flight which had taken it among other places to Basel, Straussberg, and many of the major cities of southern Germany. While moored at Echterdingen on 5 Aug 1908, it was torn from the mast by high winds and destroyed. As interest in the Zeppelins ran high in German, the incident was felt as a national disaster. Spontaneous donations resulted in approximately 5.5 million Marks and made it possible for Zeppelin to continue his work. *TIS

**1775 Jacques Frédéric Français**(20 June 1775 in Saverne, Bas-Rhin, France - 9 March 1833 in Metz, France) In September 1813 Français published a work in which he gave a geometric representation of complex numbers with interesting applications. This was based on Argand's paper which had been sent, without disclosing the name of the author, by Legendre to François Français. Although Wessel had published an account of the geometric representation of complex numbers in 1799, and then Argand had done so again in 1806, the idea was still little known among mathematicians. This changed after Français' paper since a vigorous discussion between Français, Argand and Servois took place in Gergonne's Journal. In this argument Français and Argand believed in the validity of the geometric representation, while Servois argued that complex numbers must be handled using pure algebra. *SAU

**1838 Theodor Reye (**20 June 1838 in Ritzebüttel, Germany and died 2 July 1919 in Würzburg, Germany) worked in Geometry and Projective Geometry.*SAU

**1873 Alfred Loewy**born.(20 June 1873 in Rawitsch, Germany (now Rawicz, Poznań, Poland) - 25 Jan 1935 in Freiburg im Breisgau, Germany) He worked in group theory and differential equations. *VFR

1940 Leonard Susskind (born June(20ish 1940)(

*The professor's real birthday seems difficult to determine; perhaps only known to him and his parents, perhaps only to his parents*) is the Felix Bloch Professor of Theoretical Physics at Stanford University, and Director of the Stanford Institute for Theoretical Physics. His research interests include string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the National Academy of Sciences, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics,[6] and a distinguished professor of the Korea Institute for Advanced Study.

Susskind is widely regarded as one of the fathers of string theory, having, with Yoichiro Nambu and Holger Bech Nielsen, independently introduced the idea that particles could in fact be states of excitation of a relativistic string. He was the first to introduce the idea of the string theory landscape in 2003. *Wik

**1800 Abraham Kästner**(27 September 1719 – 20 June 1800) was a German mathematician who compiled encyclopaedias and wrote text-books. He taught Gauss. *SAU

**1807 Ferdinand Berthoud**(19 March 1727 – 20 June 1807) Outstanding Swiss horologist and author of extensive treatises on timekeeping who became involved in the attempt to solve the problem of determining longitude at sea. His major achievement was his further development of an accurate and practical marine clock, or chronometer. (Such an instrument had previously been constructed in expensive and delicate prototypes by Pierre Leroy of France and John Harrison of England.) He made his first chronometer in 1754, which was sent for trial in 1761. Berthoud's improvements to the chronometer have been largely retained in present-day designs. *TIS

1865 Sir John William Lubbock, (London, England, 26 March 1803 - Downe, Kent, England, 20 June 1865 )English astronomer and mathematician. He made a special study of tides and of the lunar theory and developed a method for calculating the orbits of comets and planets. In mathematics he applied the theory of probability to life insurance problems. He was a strong proponent of Continental mathematics and astronomy.

Lubbock, third Baron Lubbock, was born into a London banking family. After attending Eton, he moved to Trinity College, Cambridge, where he became a student of William Whewell.(it was at the request of Lubbock that Whewell created the term "biometry".) He excelled in mathematics and traveled to France and Italy to deepen his knowledge of the works of Pierre-Simon de Laplace and Joseph Lagrange. Entering his father’s banking firm as a junior partner, he devoted his free time to science.

Lubbock strongly supported Lord Brougham’s Society for the Diffusion of Useful Knowledge [SDUK], which produced scientific and technical works designed for the working class. His articles on tides for the Society’s publications resulted in a book, *An Elementary Treatise on the Tides, in 1839. *Biographical Encyclopedia of Astronomers

**1966 Georges (Henri) Lemaître**was a Belgian astronomer and cosmologist, born in Charleroi, Belgium. He was also a civil engineer, army officer, and ordained priest. He did research on cosmic rays and the three-body problem. Lemaître formulated (1927) the modern big-bang theory. He reasoned that if the universe was expanding now, then the further you go in the past, the universe’s contents must have been closer together. He envisioned that at some point in the distant past, all the matter in the universe was in an exceedingly dense state, crushed into a single object he called the "primeval super-atom" which exploded, with all its constituent parts rushing away. This theory was later developed by Gamow and others.*TIS

**2003 I. Bernard Cohen**(1 March 1914 – 20 June 2003) was the Victor S. Thomas Professor of the history of science at Harvard University and the author of many books on the history of science and, in particular, Isaac Newton.

Cohen was the first American to receive a Ph.D. in history of science, was a Harvard undergraduate ('37) and then a Ph.D. student and protégé of George Sarton who was the founder of Isis and the History of Science Society. Cohen taught at Harvard from 1942 until his death, and his tenure was marked by the development of Harvard's program in the history of science. *Wik

Credits :

*CHM=Computer History Museum

*FFF=Kane, Famous First Facts

*NSEC= NASA Solar Eclipse Calendar

*RMAT= The Renaissance Mathematicus, Thony Christie

*SAU=St Andrews Univ. Math History

*TIA = Today in Astronomy

*TIS= Today in Science History

*VFR = V Frederick Rickey, USMA

*Wik = Wikipedia

*WM = Women of Mathematics, Grinstein & Campbell