Sunday, 15 September 2013

On This Day in Math - September 15

Once a sage asked why scholars always flock to the doors of the rich, whilst the rich are not inclined to call at the doors of scholars. "The scholars" he answered , "are well aware of the use of money, but the rich are ignorant of the nobility of science".
~Al-Biruni

The 258th day of the year; 258 is a sphenic(wedge) number (the product of three distinct prime factors..258 = 2·3·43) it is also the sum of four consecutive primes 243 = 59 + 61 + 67 + 71 (Jim Wilder@Wilderlab pointed out that 2,5,&8 are the numbers in the center column of a phone or calculator.)

EVENTS

1739 Euler, in a letter to Johann Bernoulli, begins the general treatment of the homogeneous linear differential equation with constant coefficients. *VFR Within a year Euler had completed this treatment by successfully dealing with repeated quadratic factors and turned his attention to the non-homogeneous linear equation. *John E. Sasser, HISTORY OF ORDINARY DIFFERENTIAL EQUATIONS
THE FIRST HUNDRED YEARS

1749 Euler's interest in lotteries began at the latest in 1749 when he was commissioned by Frederick the Great to render an opinion on a proposed lottery that would be similar to the Lottery in Genoa. The first of two letters began 15 September 1749. A second series began on 17 August 1763. E812. Read before the Academy of Berlin 10 March 1763 but only published posthumously in 1862. "Reflexions sur une espese singulier de loterie nommée loterie genoise." Opera postuma I, 1862, p. 319–335. The paper determined the probability that a particular number be drawn. *Euler’s Correspondence Translated by Richard J. Pulskamp, Department of Mathematics & Computer Science, Xavier University,
Cincinnati, OH

1782 Lagrange, in a letter to Laplace, told of ﬁnishing his M´ecanique analytique. Legendre undertook the editing of the work for the press. *VFR

1788 Thomas Paine writes to Thomas Jefferson to discuss shapes for Iron Bridges:
Whether I shall set off a catenarian Arch or an Arch of a Circle I have not yet determined, but I mean to set off both and take my choice. There is one objection against a Catenarian Arch, which is, that the Iron tubes being all cast in one form will not exactly fit every part of it. An Arch of a Circle may be sett off to any extent by calculating the Ordinates, at equal distances on the diameter. In this case, the Radius will always be the Hypothenuse, the portion of the diameter be the Base, and the Ordinate the perpendicular or the Ordinate may be found by Trigonometry in which the Base, the Hypothenuse and right angle will be always given.,
.
Jefferson's reply of Dec 23, 1788 is cited by OED as the first use of "catenary". *Jeff Miller

1846 George Boole, age 30, applied for a professorship at “any of her Majesty’s colleges, now in the course of being established in Ireland.” Although he had “never studied at a college” he had been a teacher for 15 years and was “familiar with the elementary and the practical as well as the higher Mathematics.” Although he was self taught, the testimonies of DeMorgan, Cayley, and William Thomson showed that he was an accomplished mathematician. In August 1849, he was appointed the ﬁrst professor of mathematics at Queen’s College Cork. The reason for the long delay is unclear. *MacHale, George Boole, His Life and Work, pp. 75-84

1855 Sylvester commenced his duties as professor of mathematics and lecturer in natural philosophy at the Royal Military Academy, Woolwich, and one of the richest research periods of his life began. [Osiris, 1(1936), 101] *VFR

1947 The world's oldest computing society, the Association for Computing Machinery, is founded. With more than 80,000 members today, ACM organizes conference and educational workshops to exchange information on technology.*CHM

BIRTHS

973 Al-Biruni (15 Sept 973, 13 Dec 1048) is one of the major figures of Islamic mathematics. He contributed to astronomy, mathematics, physics, medicine and history. *SAU

1736 Jean-Sylvain Bailly (15 Sep 1736; 12 Nov 1793) French astronomer who computed an orbit for Halley's Comet (1759) and studied the four satellites of Jupiter then known. He was the first Mayor of Paris (1789-91). He was executed by guillotine in Paris during the French Revolution.*TIS

1852 Edward Bouchet (15 Sept 1852, New Haven, Conn – 28 Oct 1918, New Haven, Conn) was the first African-American to earn a Ph.D. in Physics from an American university and the first African-American to graduate from Yale University in 1874. He completed his dissertation in Yale's Ph.D. program in 1876 becoming the first African-American to receive a Ph.D. (in any subject). His area of study was Physics. Bouchet was also the first African-American to be elected to Phi Beta Kappa.
Bouchet was also among 20 Americans (of any race) to receive a Ph.D. in physics and was the sixth to earn a Ph. D. in physics from Yale.
Edward Bouchet was born in New Haven, Connecticut. At that time there were only three schools in New Haven open to black children. Bouchet was enrolled in the Artisan Street Colored School with only one teacher, who nurtured Bouchet's academic abilities. He attended the New Haven High School from 1866–1868 and then Hopkins School from 1868-1870 where he was named valedictorian (after graduating first in his class).
Bouchet was unable to find a university teaching position after college, most likely due racial discrimination. Bouchet moved to Philadelphia in 1876 and took a position at the Institute for Colored Youth (ICY). He taught physics and chemistry at the ICY for 26 years. The ICY was later renamed Cheyney University. He resigned in 1902 at the height of the W. E. B. Du Bois-Booker T. Washington controversy over the need for an industrial vs. collegiate education for blacks.

Bouchet spent the next 14 years holding a variety of jobs around the country. Between 1905 and 1908, Bouchet was director of academics at St. Paul's Normal and Industrial School in Lawrenceville, Virginia (presently, St. Paul's College). He was then principal and teacher at Lincoln High School in Gallipolis, Ohio from 1908 to 1913. He joined the faculty of Bishop College in Marshall, Texas in 1913. Illness finally forced him to retire in 1916 and he moved back to New Haven. He died there, in his childhood home, in 1918, at age of 66. He had never married and had no children.*Wik

1883 Esteban Terrades i Illa (15 September 1883;Barcelona,- 9 May 1950,Madrid,) was a Spanish mathematician, scientist and engineer. He researched and taught widely in the fields of mathematics and the physical sciences, working not only in his native Catalonia, but also in the rest of Spain and in South America. He was also active as a consultant in the Spanish aeronautics, electric power, telephone and railway industries. *Wik
1886 Paul Pierre Lévy (15 Sep 1886; 15 Dec 1971) was a French mining engineer and mathematician. He contributed to probability, functional analysis, partial differential equations and series. He also studied geometry. In 1926 he extended Laplace transforms to broader function classes. He undertook a large-scale work on generalised differential equations in functional derivatives.*TIS

1894 Oskar Benjamin Klein (September 15, 1894 (or 1893?) – February 5, 1977) was a Swedish theoretical physicist. Klein retired as professor emeritus in 1962. He was awarded the Max Planck medal in 1959. He is credited for inventing the idea, part of Kaluza–Klein theory, that extra dimensions may be physically real but curled up and very small, an idea essential to string theory / M-theory. *Wik

1901 Luigi Fantappiè (15 September 1901 – 28 July 1956) was an Italian mathematician, known for work in mathematical analysis and for creating the theory of analytic functionals: he was a student and follower of Vito Volterra. Later in life he proposed scientific theories of sweeping scope.*Wik

1923 Georg Kreisel FRS (born September 15, 1923 in Graz) is an Austrian-born mathematical logician who has studied and worked in Great Britain and America. Kreisel came from a Jewish background; his family sent him to England before the Anschluss, where he studied mathematics at Trinity College, Cambridge and then, during World War II, worked on military subjects. After the war he returned to Cambridge and received his doctorate. He taught at the University of Reading until 1954 and then worked at the Institute for Advanced Study from 1955 to 1957. Subsequently he taught at Stanford University and the University of Paris. Kreisel was appointed a professor at Stanford University in 1962 and remained on the faculty there until he retired in 1985.
Kreisel worked in various areas of logic, and especially in proof theory, where he is known for his so-called "unwinding" program, whose aim was to extract constructive content from superficially non-constructive proofs.*Wik

1926 Jean-Pierre Serre (15 September 1926 - ) born in Bages, France. In 1954 he received a Fields Medal for his work on the homotopy groups of spheres. He also reformulated some of the main results of complex variable theory in terms of sheaves. See International Mathematical Congresses. An Illustrated History, 1893–1986, edited by Donald J. Albers, G. L. Alexanderson and Constance Reid.

1929 Murray Gell-Mann (15 Sep 1929 -  ). American theoretical physicist who predicted the existence of quarks. He was awarded the 1969 Nobel Prize for Physics for his contributions to particle physics. His first major contribution to high-energy physics was made in 1953, when he demonstrated how some puzzling features of hadrons (particles responsive to the strong force) could be explained by a new quantum number, which he called “strangeness”. In 1964, he (and Yuval Ne'eman) proposed the eightfold way to define the structure of particles. This led to Gell-Mann's postulate of the quark, a name he coined (from a word in James Joyce's Finnegan's Wake).*TIS

DEATHS

1883 Joseph Plateau (Bruxelles, 14 October 1801 – Ghent, 15 September 1883)  was a Belgian mathematician best known for Plateau's problem on surfaces of minimal area.*SAU He was the first person to demonstrate the illusion of a moving image. To do this he used counter rotating disks with repeating drawn images in small increments of motion on one and regularly spaced slits in the other. He called this device of 1832 the phenakistoscope. Plateau's laws describe the structure of soap films. Plateau's laws state:
Soap films are made of entire smooth surfaces.
The average curvature of a portion of a soap film is everywhere constant on any point on the same piece of soap film.
Soap films always meet in threes along an edge called a Plateau border, and they do so at an angle of cos−1(−1/2) = 120 degrees.
These Plateau borders meet in fours at a vertex, and they do so at an angle of cos−1(−1/3) ≈ 109.47 degrees (the tetrahedral angle).
Configurations other than those of Plateau's laws are unstable and the film will quickly tend to rearrange itself to conform to these laws.
That these laws hold for minimal surfaces was proved mathematically using methods of geometric measure theory by Jean Taylor.*Wik

1898 William Seward Burroughs (born 28 Jan 1855, 5 Sep 1898) American inventor who invented the world's first commercially viable recording adding machine and pioneer of its manufacture. He was inspired by his experience in his beginning career as a bank clerk. On 10 Jan 1885 he submitted his first patent (issued 399,116 on 21 Aug 1888) for his mechanical “calculating machine.” Burroughs co-founded the American Arithmometer Co in 1886 to develop and market the machine. The manufacture of the first machines was contracted out, and their durability was unsatisfactory. He continued to refine his design for accuracy and reliability, receiving more patents in 1892, and began selling the much-improved model for \$475 each. By 1895, 284 machines had been sold, mostly to banks, and 1500 by 1900. The company later became Burroughs Corporation (1905) and eventually Unisys. *TIS

1962 William W(eber) Coblentz (20 Nov 1873, 15 Sep 1962) was an American physicist and astronomer whose work lay primarily in infrared spectroscopy. In 1905 he founded the radiometry section of the National Bureau of Standards, which he headed for 40 years. Coblentz measured the infrared radiation from stars, planets, and nebulae and was the first to determine accurately the constants of blackbody radiation, thus confirming Planck's law.*TIS

Credits
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell