Tuesday 14 May 2024

On This Day in Math - May 14

 




“I have found a very great number of exceedingly beautiful theorems.”
 
Pierre de Fermat


The 134th day of the year; 134 has only two prime factors (67 and 2){called a bi-prime or a semiprime, it is the 45th semiprime of the year to date.} . Note that 1342 - 672 = 13467, which is the base numbers concatenated. *Prime Curios

134 is the sum of 8C1 + 8C3 + 8C4


134 is the 19th day of the year that is the sum of three positive cubes.


And 134 is the maximal number of regions the plane can be divided with 12 circles.

It is not possible to append a single digit to 134 and produce a prime. 

In this politically charged atmosphere, individuals in the military might want to be aware that, the American UCMJ; Article 134 is the catch-all article, for offences "not specifically mentioned in this chapter." Used to prosecute a wide variety of offences, from cohabitation by personnel not married to each other to statements critical of the U.S. President. Some prisoners, including Abu Ghraib were tagged with this number. Wik



EVENTS


May 14, 1230 "On the 14th May, which was the Tuesday in Rogation Week, the unusual eclipse of the Sun took place very early in the morning, immediately after sunrise; and it became so dark that the labourers, who had commenced their morning's work, were obliged to leave it, and returned again to their beds to sleep; but in about an hour's time, to the astonishment of many, the Sun regained its usual brightness." Refers to the total solar eclipse of 14 May 1230. From: Rogerus de Wendover, Flores Historiarum, vol.
ii. p.235 *NASA with HT to David Dickinson ‏ @Astroguyz



1539 Georg Joachim Rheticus writes from Posen to his teacher/friend Johannes Schoener in Nuremberg to tell him he is on the way to visit Copernicus. It may well have been Schoener that urged him to visit Copernicus. No record of the letter itself exists, but it was mentioned in the dedication of the Narratio prima by Rheticus sent to Schoener in 1540 while Rheticus was still studying with Copernicus. *John W. Hessler, A Renaissance Globemaker's Toolbox


1607 The first permanent English settlement in American was founded at Jamestown, VA. *VFR


1631 Pierre de Fermat installed at Toulouse, at age 31, as commissioner of requests. *VFR He would retain the position until his death.


1743 In a letter to Nikolaus Bernoulli in 1743, Euler writes 1 + x + x2 + ... +  xn. One of the first uses of ellipses for series.  Cajori states earlier use was most commonly "etc." or "&c." 


1755 Joseph Louis Vincens de Mauleon, governor of the principality of Orange, published his “proof” that the circle could be squared. He claimed this proof enabled him to explain the mysteries of original sin and of the Holy Trinity.Although he offered a prize of 300,000 franks to anyone who could show his proof fallacious, it is pure nonsense. *VFR




1791, the twenty-one year old Alexander von Humboldt wrote a to the Prussian minister and director of the Mining and Smelting Department (Bergwerks- und Hüttendepartment) in Berlin. In the letter he described his ‘plan’ (Entwurf) for his ‘future public life.’ Young Humboldt had manifold interests, but in spring 1791 he had made up his mind. He wanted to serve his Fatherland, not as a member of the military, but as a scientifically trained, practical mining official.
‘I am of the age,’ he stated, ‘in which I must desire to enter a certain sphere of activity, and to become useful to my Fatherland through the minor forces I sense within me.’ His wish to join von Heynitz's mining department and to ‘undergo comprehensive training’ in his department, he further explained, was motivated by ‘the decisive inclination for mineralogy [and] for the science of salt works and mining (Salz- und Bergwerkskunde)’ along with ‘the hope, one day perhaps to contribute to the large and beneficial plans’ through which von Heynitz, based on the ‘principles of state economy,’ had ‘opened new sources of national wealth. *Ursula Klein,The Prussian Mining Official Alexander von Humboldt, Annals of Science, 2012




1832 "In March 1832 a cholera epidemic swept Paris and prisoners, including Galois, were transferred to the Pension Sieur Faultrier. There he apparently fell in love with Stephanie-Felice du Motel, the daughter of the resident physician. After he was released on 29 April Galois exchanged letters with Stephanie, and it is clear that she tried to distance herself from the affair. The name Stephanie appears several times as a marginal note in one of Galois' manuscripts." *SAU On May 14, Galois received a rejection letter from Stephanie. (Am I the only one who finds it funny that he met a woman named Motel in a Pension.)




1910 Halley's comet was big news during its visible period in New York City. Beginning with the Saturday edition of May 14 and continuing on through the Sunday edition of May 22, the comet was given top billing in the New York Times. This was the period when the comet was at the height of its brilliance and activity and the coverage clearly reflected this. "May 14: NYC hotel roofs being used for comet parties; Professor S. A. Mitchell tells of superstitions surrounding comets through the ages in NYC speech." *Joseph M. Laufer, Halley's Comet Society - USA

Mary Proctor FRAS FRMetS (1 April 1862 – 11 September 1957) was a British-American popularizer of astronomy. While not a professional astronomer, Proctor became well known for her books and articles written for the public – particularly her children's fiction.





1953 Results of the third annual MAA Mathematics Contest for high school students were announced. Tied for fourth place was Geraldine Anne Ferraro who later became the first woman vice-presidential nominee of a major political party. *VFR



1963  Yvonne Choquet-Bruhat became the first woman full member of the French Academy of Sciences.  She was a French mathematician and physicist who made important contributions to the general theory of relativity.

 She has made seminal contributions to the study of Einstein's general theory of relativity, by showing that the Einstein equations can be put into the form of an initial value problem which is well-posed. In 2015, her breakthrough paper was listed by the journal Classical and Quantum Gravity as one of thirteen 'milestone' results in the study of general relativity, across the hundred years in which it had been studied.




BIRTHS

1679 Peder [Nielsen] Horrebow (Horrebov) (14 May 1679; Løgstør, Jutland – 15 April 1764; Copenhagen) From 1703 to 1707, he served as an assistant to Ole Rømer and lived in Rømer's home. He worked as a household tutor from 1707 to 1711 to a Danish baron, and entered the governmental bureaucracy as an excise writer in 1711.
After repeatedly petitioning King Frederick IV, Horrebow became professor of mathematics at the University of Copenhagen in 1714. He also became director of the university's observatory (called the Rundetårn, "the Round Tower"). His son Christian succeeded him in this position. Horrebow and his wife, Anne Margrethe Rossing, had a total of 20 children.
In 1728, the great fire of Copenhagen destroyed all of the papers and observations made by Rømer, who had died in 1710. Horrebow wrote the Basis Astronomiae (1734–35), which describes the scientific achievements made by Rømer. Horrebow's own papers and instruments were destroyed in the same fire. Horrebow was given a special grant from the government to repair the observatory and instruments. Horrebow received further support from a wealthy patron.
Horrebow invented a way to determine a place's latitude from the stars. The method fixed latitude by observing differences of zenith distances of stars culminating within a short time of each other, and at nearly the same altitude, on opposite sides of the zenith. The method was soon forgotten despite its value until it was rediscovered by the American Andrew Talcott in 1833. It is now called the Horrebow-Talcott Method.
He wrote on navigation and determined the sun parallax, 9", an approximative solution to the Kepler equation. Horrebow also learned how to correct inherent flaws in instruments. This preceded Tobias Mayer's theory of correction of 1756.
Horrebow was a member of a number of scientific societies, including the Académie des Sciences (from 1746). He also worked as a medical doctor and as an academic notary (from 1720). *Wik




1701 William Emerson (14 May 1701 – 20 May 1782), English mathematician, was born at Hurworth, near Darlington, where his father, Dudley Emerson, also a mathematician, taught a school. William himself had a small estate in Weardale called Castle Gate situated not far from Eastgate where he would repair to work throughout the Summer on projects as disparate as stonemasonry and watchmaking. Unsuccessful as a teacher, he devoted himself entirely to studious retirement. Possessed of remarkable energy and forthrightness of speech, Emerson published many works which are singularly free from errata.

In The Principles of Mechanics (1754) he shows a wind-powered vehicle in which the vertically mounted propeller gives direct power to the front wheels via a system of cogs. In mechanics he never advanced a proposition which he had not previously tested in practice, nor published an invention without first proving its effects by a model. He was skilled in the science of music, the theory of sounds, and the ancient and modern scales; but he never attained any excellence as a performer. He died on 20 May 1782 at his native village, where his gravestone bears epitaphs in Latin and Hebrew.

Emerson dressed in old clothes and his manners were uncouth. He wore his shirt back to front and his legs wrapped in sacking so as not to scorch them as he sat over the fire. He declined an offer to become FRS because it would cost too much after all the expense of farthing candles he had been put to in the course of his life of study. Emerson rode regularly into Darlington on a horse like Don Quixote's, led by a hired small boy. In old age, plagued by the stone, he would alternately pray and curse, wishing his soul 'could shake off the rags of mortality without such a clitter-me-clatter.' *Wik





1832 Rudolf Otto Sigismund Lipschitz (14 May 1832 – 7 October 1903)  is remembered for the "Lipschitz condition", an inequality that guarantees a unique solution to the differential equation y' = f (x, y). *SAU
Lipschitz discovered Clifford algebras in 1880, two years after William K. Clifford (1845–1879) and independently of him, and he was the first to use them in the study of orthogonal transformations. Up to 1950 people mentioned “Clifford-Lipschitz numbers” when they referred to this discovery of Lipschitz. Yet Lipschitz’s name suddenly disappeared from the publications involving Clifford algebras; for instance Claude Chevalley (1909–1984) gave the name “Clifford group” to an object that is never mentioned in Clifford’s works, but stems from Lipschitz’s. Pertti Lounesto (1945–2002) contributed greatly to recalling the importance of Lipschitz’s role. *Wik




1863 John Charles Fields (May 14, 1863 - August 9, 1932) born in Toronto, Canada. After earning his Ph.D. at Johns Hopkins in 1887, he taught at Allegheny College (1889-1892) before going to Europe for a decade to study in Paris and Berlin. In 1902 he joined the faculty at the University of Toronto, where he remained until his death on 9 August 1932. *VFR
He originated the idea, posthumously given his name - for the Fields Medal. It became the most prestigious award for mathematicians, often referred to as the equivalent of a Nobel Prize for mathematicians. As a professor at the University of Toronto, he had worked to bring the International Congress of Mathematicians to Toronto (1924). The Congress was so successful that afterward there was a surplus of about \($2,500\) which Fields, as chairman of the organizing committee, proposed be used to fund two medals to be awarded at each of future Congresses. This was approved on 24 Feb 1931. He died the following year, leaving \($47,000\) as additional funding for the medals, which have been awarded since 1936. *TIS






1875  Beppo Levi (14 May 1875 – 28 August 1961) was an Italian mathematician. He published high-level academic articles and books, not only on mathematics, but also on physics, history, philosophy, and pedagogy. Levi was a member of the Bologna Academy of Sciences and of the Accademia dei Lincei.

His early work studied singularities on algebraic curves and surfaces. In particular, he supplied a proof (questioned by some) that a procedure for resolution of singularities on algebraic surfaces terminates in finitely many steps. Later he proved some foundational results concerning Lebesgue integration, including what is commonly known as Beppo Levi's lemma.



1878  Roland George Dwight Richardson (born May 14, 1878, Dartmouth, Nova Scotia; died July 17, 1949, Antigonish, Nova Scotia) was a prominent Canadian-American mathematician chiefly known for his work building the math department at Brown University and as Secretary of the American Mathematical Society.

Richardson was the Secretary of the American Mathematical Society in 1921 and held the job until 1940. During his time, Raymond Clare Archibald wrote in his article on Richardson, "No American mathematician was more widely known among his colleagues and the careers of scores of them were notably promoted by his time-consuming activities in their behalf." He was credited with helping many European mathematicians concerned about conditions in Europe move to America during the 1930s.

At the start of World War II Richardson organized accelerated applied mathematics courses at Brown for servicemen as the "Program of Advanced Instruction and Research in Applied Mechanics", recruiting German mathematician William Prager to lead it. This led to the founding of a new "Quarterly of Applied Mathematics" edited at Brown in 1943. After the war the program was converted into a new graduate division of applied mathematics. From 1943 to 1946 he was a member of the applied mathematics panel of the National Defense Research Committee.




1917 William Thomas Tutte FRS (May 14, 1917 – May 2, 2002) was a British, later Canadian codebreaker and mathematician. During World War II he broke a major German code system, which had a significant impact on the Allied invasion of Europe. He also had a number of significant mathematical accomplishments, including foundation work in the fields of combinatorics and graph theory. *Wik;




1925 Yuval Ne'eman (14 May 1925 – 26 April 2006) was an Israeli theoretical physicist, military scientist, and politician. 
An Israeli theoretical physicist, who worked independently of Gell-Mann but almost simultaneously (1961) devised a method of grouping baryons in such a way that they fell into logical families. Now known as the Eightfold Way (after Buddha's Eightfold Path to Enlightenment and bliss), the scheme grouped mesons and baryons (e.g., protons and neutrons) into multiplets of 1, 8, 10, or 27 members on the basis of various properties. He had served as the head of his Israel's atomic energy commission, and  founded the country's space program.



DEATHS

1669 Denis de Sallo, Sieur de la Coudraye (1626 - May 14, 1669) was a French writer and lawyer from Paris, known as the founder of the first French literary and scientific journal - the Journal des sçavans.
De Sallo obtained classical education and was admitted to the Paris bar in 1652, although he later devoted himself to scholarly aspects of the law rather than active practice, serving also as a counsel in the French government. He belonged to the clique of Jean-Baptiste Colbert, minister of finance under Louis XIV, and had active contacts with other prominent European scholars.
In 1665 he published the first issue of the Journal des sçavans under the pseudonym Sieur d'Hédouville. The idea for the journal was similar in scope to an outline written by the historian François Eudes de Mézeray who also belonged to the Colbert's clique and briefly lived in the same household as de Sallo. It included recording news and inventions in the various arts and sciences, decisions of secular and ecclesiastical courts, reviews of new scholarly books and other items of broader interest to a modern scholar.
De Sallo's health deteriorated in his final years so that he was unable to walk; his condition has been attributed to diabetes. *Wik




1761 Thomas Simpson (20 August 1710 – 14 May 1761) is best remembered for his work on interpolation and numerical methods of integration. However the numerical method known today as "Simpson's rule", although it did appear in his work, was something he learned from Newton as Simpson himself acknowledged. By way of compensation, however, the Newton-Raphson method for solving the equation f (x) = 0 is, in its present form, due to Simpson. Newton described an algebraic process for solving polynomial equations which Raphson later improved. The method of approximating the roots did not use the differential calculus. The modern iterative form xn+1 = xn - f (xn) / f '(xn) is due to Simpson, who published it in 1740. *SAU





1797 Giovanni Francesco Fagnano dei Toschi (31 Jan 1715 in Sinigaglia, Italy - 14 May 1797 in Sinigaglia, Italy) He proved that the triangle which has as its vertices the bases of the altitudes of any triangle has those altitudes as its bisectors. *VFR Of all the triangles that could be inscribed in a given triangle, the one with the smallest perimeter is the orthic triangle. This has sometimes been called Fagnano's Problem since it was first posed and answered by Giovanni Francesco Fagnano dei Toschi. Fagnano also was the first to show that the altitudes of the original triangle are the angle bisectors of the orhtic triangle, so the incenter of the orthic triangle is the orthocenter of the original triangle.*pb





1893 Ernst Eduard Kummer (29 January 1810 – 14 May 1893)  He was professor at the University of BRESLAU (now WROCLAW, Poland) in 1842-1855 and developed his theory of ideals here. KRONECKER studied with him. Later he replaced Dirichlet at The University of Berlin. He died at age 83, after a short attack of influenza. German mathematician whose introduction of ideal numbers, which are defined as a special subgroup of a ring, extended the fundamental theorem of arithmetic to complex number fields. He worked on Function theory, and  extended Gauss's work on hypergeometric series, giving developments that are useful in the theory of differential equations. He was the first to compute the monodromy groups of these series. Later. Kummer

devoted himself to the study of the ray systems, but treated these geometrical problems algebraically. He also discovered the fourth order surface based on the singular surface of the quadratic line complex. This Kummer surface has 16 isolated conical double points and 16 singular tangent planes.  *TIS and others   An oft told, and almost certianly untrue anecdote is told about Kummer: Kummer was so inept at simple arithmetic that he often asked students to help him in class. On one occasion, Kummer sought the result of a simple multiplication. "Seven times nine," he began. "Seven times nine is er - ah - ah - seven times nine is..." "Sixty-one," a mischievous student suggested and Kummer wrote the "answer" on the blackboard. "Sir," another one interjected, "it should be sixty-seven." "Come,  gentlemen, it can't be both," Kummer exclaimed. "It must be one or the other!" According to Erdos, Kumer reasoned out the answer as follows, -It can't be 61 as that is prime, as is 67, and 65 is a multiple of five, and 69 is too big, so it must be 63.


1924 Enrico Barone (December 22, 1859, Naples – May 14, 1924, Rome) Italian mathematical economist who built on the general equilibrium theory of Léon Walras and was instrumental in convincing Walras to incorporate variable production techniques - and, by extension, marginal productivity theory - into the Walras theory. Barone's greatest contribution was in getting the "Socialist Calculation" debate started with his famous 1908 article. His position was that it was indeed possible in a collectivist state for a planning agency to calculate prices for maximum efficiency. He was the first to apply indifference curve analysis to compare the relative burdens of income taxes and excise taxes (1912). He opposed "progressive" taxation schemes as based on dubious utilitarian calculations. *TIS




1985 Charles Leonard Hamblin (20 November 1922 – 14 May 1985) was an Australian philosopher, logician, and computer pioneer, as well as a professor of philosophy at the New South Wales University of Technology (now the University of New South Wales) in Sydney.
Among his most well-known achievements in the area of computer science was the introduction of Reverse Polish Notation and the use in 1957 of a push-down pop-up stack. This preceded the work of Friedrich Ludwig Bauer and Klaus Samelson on use of a push-pop stack. The stack had been invented by Alan Turing in 1946 when he introduced such a stack in his design of the ACE computer. Hamblin's most well-known contribution to philosophy is his book Fallacies, a standard work in the area of the false conclusions in logic. *Wik





2021 Yuan Wang (29 April 1930 in Lanhsi, Zhejiang province, China - 14 May 2021) )Most of Wang Yuan's research has been in the area of number theory. He looked at sieve methods and applied them to the Goldbach Conjecture. He also applied circle methods to the Goldbach Conjecture. In 1956 he published (in Chinese) On the representation of large even integer as a sum of a prime and a product of at most 4 primes in which he assumed the truth of the Riemann hypothesis and with that assumption proved that every large even integer is the sum of a prime and of a product of at most 4 primes. He also proved that there are infinitely many primes p such that p + 2 is a product of at most 4 primes. In 1957 Wang Yuan published four papers: On sieve methods and some of their applications; On some properties of integral valued polynomials; On the representation of large even number as a sum of two almost-primes; and On sieve methods and some of the related problems.*SAU




Credits :

*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Monday 13 May 2024

On This Day in Math - May 13

 




In mathematics you don't understand things.
You just get used to them.

~ John von Neumann


The 133rd day of the year; 133 is a "happy number".  If you sum the squares of the digits and then repeat the process and the sum will eventually come to one. (12 + 32+32= 19 ... ===  82 === 68 === 100 ====1) Some numbers, "unhappy ones", never reach one. (Student's might explore happy numbers to find how many times the process must be iterated for different numbers to reach one, for example I (33) = 5  Alternatively, curious students may wonder what happens to the "unhappy" numbers if they never reach one.)

133 is a repdigit in base 11 (111) and base 18 (77),

133 is the sum of the squares of the first three semi-primes, and is a semi-prime itself. it is the smallest number with this property.  133= 42 + 62 +92 =7*19

133, and 134 were used by Euler in generating birectangular Heronian tetrahedra.  He created a method for deriving them from equal sums of fourth powers  p^4 + q^4 = r^4 + s^4 and used 133 and 134 on one side, and 59 and 158 on the other.  The actual side lengths of the three perpendicular edges created from this quartet were over 332,000,000.

133 is the smallest integer, n, for which 10 n +(1or 3 or 7 or 9) are all composite.  *Prime Curios

The Dewey Decimal system classification for numerology is 133.533, and if you add the first to the reverse of the second 133+335=666.... 


And Jim Wilder @wilderlab posted this interesting observation about 133 and it's reversal, 331.



EVENTS


1637 The table knife was created by Cardinal Richelieu in France. Until this time, daggers were used to cut meat, as well as to pick one's teeth. Richelieu had the points rounded off all of the knives to be used at his table *TIS

He was a French statesman and prelate of the Catholic Church. He became known as l'Éminence rouge, or "the Red Eminence", a term derived from the title "Eminence" applied to cardinals and from the red robes that they customarily wear.





1673 Scottish mathematician, physicist and optician James Gregory in a letter to John Collins, remarks on diffraction:

If ye think fit, ye may signify to Mr. Newton a small experiment, which (if he know it not already) may be worthy of his consideration. Let in the sun’s light by a small hole to a darkened house, and at the hole place a feather, (the more delicate and white the better for this purpose,) and it shall direct to a white wall or paper opposite to it a number of small circles and ovals, (if I mistake them not) whereof one is somewhat white, (to wit, the middle, which is opposite to the sun,) and all the rest severally coloured. I would gladly hear his thoughts of it.

"Diffraction was first investigated and described by the Jesuit astronomer, mathematician and physicist Francesco Maria Grimaldi (1618 – 1663) and published posthumously in his Physico mathesis de lumine, coloribus, et iride, aliisque annexis libri duo in 1665. Grimaldi was one of the prominent products of Clavius’ mathematical education programme who as well as his investigation into light also conducted empirical experiments into the laws of free fall, confirming Galileo’s results, together with another Jesuit scientist Giovanni Battista Riccioli (1598 -1671) with whom he also produced the most accurate map of the moon in the 17th century. On the basis of his optical investigation and in particular his discovery of diffraction, Grimaldi developed a wave theory of light. It was Grimaldi who gave this particular optical phenomenon its name deriving it from the Latin verb diffringere ‘break into pieces’ from ‘dis’ apart and frangere ‘to break’. "

*Thony Christie, The Renaissance Mathematicus



1733 Swedish Astronomer Birger Wassenius reports on the Eclipse and attributes solar prominences to the Moon:

I can tell you is this, that I soon after the sun's total extinction became aware of some small lighter spots UTI the bright ring, or the atmosphere, about 3 or 4, of different temperament and size, which set in towards the moon's periphery , but at no point next to it. As is now not the moon altogether at one time could fall into my eyes through a long tube, so I had particularly esteem of the largest of these spots, which in the tube appeared on the northeast side of the moon. Being that as composed of three reddish cloud drops placed adjacent to one side, with darker colors or stripes in between, such as the figure below shows fairly. "

*Astronomer Guide

After five years of study at Uppsala University, he published his first academic essay in 1717, which was about the planet Mars . It ended with the calculation of the transit of Venus that would occur in 1761. During his studies, he also built several aids to be able to make accurate astronomical studies.

Wassenius Almanack




In 1769 Britain's Board of Longitude awarded 10 Pounds to Israel Lyons, Mathematician for, "Reward for his solution to a problem proposed by the late Dr Halley which the Commissioners of Longitude think will be useful to Navigation."  The problem seemed to be related to "traverse sailing."  In June of 1775 his widow would receive an additional 31.50 Pounds for "some of her husband's Problems & Solutions which have been given up by her..." *Derek Howse, Britain's Board of Longitude: The Finances, 1714-1828

Called Israel Lyons the Younger, he was one of the mathematicians who computed the navigation tables for the first Nautical Almanac (1767). 





1829 Charles-Francois Sturm presented his theorem for finding the number of real roots of a polynomial equation to the French Academy. *VFR  For counting and isolating the real roots, other methods, such as Descartes' rule of signs, are usually preferred, because they are computationally more efficient.

Whereas the fundamental theorem of algebra readily yields the overall number of complex roots, counted with multiplicity, it does not provide a procedure for calculating them. Sturm's theorem counts the number of distinct real roots and locates them in intervals. By subdividing the intervals containing some roots, it can isolate the roots into arbitrarily small intervals, each containing exactly one root. This yields the oldest real-root isolation algorithm, and arbitrary-precision root-finding algorithm for univariate polynomials.




1861 Australian astronomer John Tebbutt discovered C/1861 J1, the Great Comet of 1861.  Tebbutt also discovered Nova Scorpii 1862, a nova visible to the unaided eye.



*SciHiBlog


In 1890, Nikola Tesla was issued a patent for an electric generator (No. 428,057). *TIS




1940 aviation pioneer Igor Sikorsky made the maiden flight with his newly developed helicopter VS-300 *@yovisto

Designed by Igor Sikorsky and built by the Vought-Sikorsky Aircraft Division of the United Aircraft Corporation, the helicopter was the first to incorporate a single main rotor and tail rotor design. *Wik




2010 The Times reported on 13 May 2010 that Foucault's original Pendulum is damaged, "Historic instrument is irreparably damaged in an accident at a Paris museum. The original pendulum, which was used by French scientist Leon Foucault to demonstrate the rotation of the Earth and which forms an integral part of Eco's novel's labyrinthine plot, has been irreparably damaged in an accident in Paris. The pendulum's cable snapped last month and its sphere crashed to the marble floor of the Musee des Arts et Metiers. In 1851, Foucault used the pendulum to perform a sensational demonstration in the Paris Pantheon, proving to Napoleon III and the Parisian elite that the Earth revolved around its axis. Such was its success that the experiment was replicated throughout Europe.
Thierry Lalande, the museum's ancient scientific instruments curator, said that the pendulum's brass bob had been badly damaged in three places and could not be restored.
"It's not a loss, because the pendulum is still there, but it's a failure because we were unable to protect it," he said. The circumstances surrounding the accident have raised eyebrows in France.
The museum regularly hosts cocktail parties in the chapel that houses the pendulum, and Mr Lalande admitted that several alarming incidents had occurred over the past year. In May 2009, for example, a partygoer grabbed the 28kg instrument and swung it into a security barrier. *Times Higher Education





2013 Peruvian mathematician Harald Andrés Helfgott releases pre-print claiming a completed proof of the weak Goldbach Conjecture. The weak, or ternary, Goldbach conjecture states that every odd integer greater than 5 can be written as the sum of three primes; *The Value of the Variable at Wordpress.com


2013  At a Harvard seminar on May 13, 2013, the first major breakthrough was  produced in solving the twin primes conjecture.  A lecturer from the University of New Hampshire, Yitang Zhang, had proved that there are infinitely many pairs of primes that differ by no ,ore than 70,000,000.  It was a long way from differing by two, but it was an even greater distance from infinity.  He had submitted his paper to the Annals of Mathematics in April, and they had rushed to get reviews, which turned out to be enthusiastically positive. By May 21, 2013, the paper was accepted for publication on the 1st of May 2014.
By the 31st of May 2013, a group led by Scott Morrison and Terry Tao had lowered the gap to 42,342,946; game on!

This work led to a 2013 Ostrowski Prize, a 2014 Cole Prize, a 2014 Rolf Schock Prize, and a 2014 MacArthur Fellowship. Zhang became a professor of mathematics at the University of California, Santa Barbara in fall 2015.


2016 Friday the 13th.  The thirteenth of the month is more likely to occur on Friday than on any other day of the week. 
Each Gregorian 400-year cycle contains 146,097 days (365 × 400 = 146,000 normal days, plus 97 leap days) and they equal 146,097 days, total. 146,097 ÷ 7 = 20,871 weeks. Thus, each cycle contains the same pattern of days of the week (and thus the same pattern of Fridays that are on the 13th). The 13th day of the month is slightly more likely to be a Friday than any other day of the week.   On average, there is a Friday the 13th once every 212.35 days (compared to Thursday the 13th, which occurs only once every 213.59 days).
According to the Stress Management Center and Phobia Institute in Asheville, North Carolina, an estimated 17 to 21 million people in the United States are affected by a fear of this day. Some people are so paralyzed by fear that they avoid their normal routines in doing business, taking flights or even getting out of bed. "It's been estimated that [US]$800 or $900 million is lost in business on this day". Despite this, representatives for both Delta and Continental Airlines say that their airlines do not suffer from any noticeable drop in travel on those Fridays.
According to folklorists, there is no written evidence for a "Friday the 13th" superstition before the 19th century. The earliest known documented reference in English occurs in Henry Sutherland Edwards' 1869 biography of Gioachino Rossini.

In both Greek and Spanish populations, Tuesday the 13th is considered an "unlucky" day, and Italians have a similar tradition for Friday the 17th.

Don't worry, if something terrible doesn't happen to you today, you have another chance for disaster next January. *PB (Or, for 2024, in September.)








BIRTHS
 



1713 Alexis Clairaut (sometimes Clairault)( 13 May 1713 – 17 May 1765) a French mathematician who worked to confirm the Newton-Huygens belief that the Earth was flattened at the poles. He was a child prodigy was studying calculus at age 10 and was admitted to the Academy of Sciences at age 18. He was the first person to estimate the mass of Venus to a close value. He also calculated the return date of Halley's comet. In about 1737, Pierre de Maupertuis led an expedition (including Clairaut) to measure a degree along a meridian in Lapland, while Bouguer and La Condamine went to Peru. The results, even before the Peru expedition had returned, showed that Newton was correct in predicting that the earth was flattened at the poles. He published the results in Théorie de la figure de la Terre in 1743.(various)
A nice brief summary of Clairaut's life and works is here.

As a child prodigy, at age ten he was studying calculus, tutored by his father. Clairaut read his first paper, Quatre problèmes sur de nouvelles courbes to the Paris Academy (1726) at the age of 13. He accompanied Maupertuis on an expedition to Lapland to measure the length of the meridian. From this experience, he began a book (1743) on the shape of the rotating earth under the influences of gravity and centrifugal forces. Further, he showed how to measure the shape by use of measurements of the effect of gravity at different location on the swing of a pendulum. He also determined the first reasonable value for the mass of Venus, an improved value for the mass of the moon, and predicted the timing of the return of Halley's Comet.





1750 Lorenzo Mascheroni (May 13, 1750 – July 14, 1800) was a geometer who proved in 1797 that all Euclidean constructions can be made with compasses alone, so a straight edge in not needed.*SAU He is also known for the Euler–Mascheroni constant which gives the limit of the difference between ln(n) and the sum of the harmonic series for the first n terms. The constant first appeared in a 1735 paper by the Swiss mathematician Leonhard Euler, titled De Progressionibus harmonicis observationes (Eneström Index 43). Euler used the notations C and O for the constant. In 1790, Italian mathematician Lorenzo Mascheroni used the notations A and a for the constant. The notation γ appears nowhere in the writings of either Euler or Mascheroni, and was chosen at a later time because of the constant's connection to the gamma function. For example, the German mathematician Carl Anton Bretschneider used the notation γ in 1835. *Wikipedia, 

He was also a founder of the science of mechanics, asserting that the velocity of a falling body was independent of its weight.





1753 Lazare-Nicolas-Marguerite Carnot,  (13 May 1753 – 2 August 1823)  who published his "Reflections on the Metaphysics of the Infinitesimal Calculus" in 1797. It was written in 1784 for a competition of the Berlin academy seeking a “clear and precise” foundation for the calculus. *VFR  His son Sadi Carnot was a founder of the field of thermodynamics and the theory of heat engines .  Lazare is better known outside of mathematics as a military tactician and politician.





1804 Janet Taylor was (born Jane Ann Ionn, 13 May 1804 – 25 January 1870the sixth child of the Reverend Peter Ionn and Jane Deighton, the daughter of a country gentleman.

After the death of her mother when she was just seven years old, Janet gained a scholarship at the precociously young age of nine, to attend Queen Charlotte’s school in Ampthill, Bedfordshire, where the other girls were all aged over 14. Her life thereafter took her into the heart of maritime London.

Her father, the curate of the church of St Mary and St Stephen and schoolmaster of the Free Grammar School at Wolsingham, inspired her in the wonders of navigation. She became a prodigious author of nautical treatises and textbooks, born of a fascination in particular in measuring longitude by the lunar distance method.

She conducted her own Nautical Academy in Minories in the east end of the City, not far from the Tower of London; she was a sub-agent for Admiralty charts; ran a manufacturing business for nautical instruments, many of which she designed herself; and embarked on the business of compass-adjusting at the height of the controversies generated by magnetic deviation and distortions on iron ships.

Through her scientific work, Janet established a respectful correspondence with those in the highest positions in the maritime community: men like the head of the Admiralty’s Hydrographic Office, Captain, later Rear-Admiral Sir Francis Beaufort, and Professor Sir George Biddell Airy, the Astronomer Royal.

Where they were hesitant at first in their engagement with Mrs Taylor, she clearly won their support and respect. Between 1617 and 1852 there 79 patents awarded for nautical instruments – Janet was the only women among them for her Mariner’s Calculator. Dismissed by the Admiralty, it had no commercial future and only one instrument is known to remain in existence.

In 1835, in consideration of ‘services she has extended to seamen’, through her Lunar Tables, the Admiralty awarded her £100 ‘from scientific funds’, a ‘handsome pecuniary award’. She was similarly honoured by the two other members of the ‘big three’ of the 19th Century maritime world in Britain: the Elder Brethren of Trinity House and the East India Company.

Her Mariners compass was displayed on the first page of her Lunar Tables. 


She also received international recognition for her contributions: gold medals from the King of Holland and King Friedrich Wilhelm III of Prussia; and, by 1844, a medal from the Pope.

Janet passed away on in January 1870. She was the author of many books, including some that ran to 27 editions and several are still in print today. She was also an inventor of several nautical instruments with some being held in the national maritime Museum in Greenwich.

Sadly, she died in obscurity and bankrupt, estranged from all her children, several of whom lived in Australia. Her death certificate records her occupation simply as ‘Teacher of Navigation’, but she was far more than this.  *Science Focus





1857 Frederick William Sanderson (13 May 1857 – 15 June 1922) was headmaster of Oundle School from 1892 until his death. He was an education reformer, and both at Oundle, and previously at Dulwich College where he had started as assistant master, he introduced innovative programs of education in engineering. Under his headmastership, Oundle saw a reversal of a decline from which it had been suffering in the middle of the 19th century, with school enrolment rising from 92 at the time of his appointment to 500 when he died.
Sanderson was the inspiration for the progressive headmaster character in H. G. Wells' novel Joan and Peter. Wells had sent his own sons to Oundle, and was friendly with Sanderson. After Sanderson's death, which occurred shortly after delivering an address to Wells and others, Wells initially worked on his official biography, entitled Sanderson of Oundle, but later abandoned it in favour of an unofficial biography, The Story of a Great Schoolmaster. *Wik




1888 Inge Lehmann  (13 May 1888 – 21 February 1993) was a Danish seismologist and geophysicist. In 1936, she discovered that the Earth has a solid inner core inside a molten outer core. Before that, seismologists believed Earth's core to be a single molten sphere, being unable, however, to explain careful measurements of seismic waves from earthquakes, which were inconsistent with this idea. Lehmann analysed the seismic wave measurements and concluded that Earth must have a solid inner core and a molten outer core to produce seismic waves that matched the measurements. Other seismologists tested and then accepted Lehmann's explanation. Lehmann was also one of the longest-lived scientists, having lived for over 104 years *Wik 

Lehmann Memorial






1931 András Hajnal (May 13, 1931 - ) is an emeritus professor of mathematics at Rutgers University and a member of the Hungarian Academy of Sciences known for his work in set theory and combinatorics. Hajnal is the author of over 150 publications. Among the many co-authors of Paul Erdős, he has the second largest number of joint papers, 56. With Peter Hamburger, he wrote a textbook, Set Theory

In 1992, Hajnal was awarded the Officer's Cross of the Order of the Republic of Hungary.[5] In 1999, a conference in honor of his 70th birthday was held at DIMACS, and a second conference honoring the 70th birthdays of both Hajnal and Vera Sós was held in 2001 in Budapest. Hajnal became a fellow of the American Mathematical Society in 2012.*Wik





DEATHS

1826 Christian Kramp(July 8, 1760 – May 13, 1826) As Bessel, Legendre and Gauss did, Kramp worked on the generalised factorial function which applied to non-integers. His work on factorials is independent of that of Stirling and Vandermonde. The word factorial is reported to be the creation of Louis François Antoine Arbogast (1759-1803). The symbol now commonly used for factorial seems to have been created by Christian Kramp in 1808. It is referred to as "Kramp's notation" in Chrystal's famous Algebra.

My Notes on the History of the Factorial is here. 



1878 Joseph Henry (17 Dec 1797, 13 May 1878 at age 80) One of the first great American scientists after Benjamin Franklin. Although Henry at an early age appeared to be headed for a career in the theater, a chance encounter with a book of lectures on scientific topics turned his interest to science. He aided Samuel F.B. Morse in the development of the telegraph and discovered several important principles of electricity, including self-induction, a phenomenon of primary importance in electronic circuitry. He was the first Secretary (director) of the Smithsonian Institution (1846-1878), where he established the foundation of a national weather service. For more than thirty years, Henry insisted that basic research was of fundamental importance. *TIS  

Henry discovered the electromagnetic phenomenon of self-inductance. He also discovered mutual inductance independently of Michael Faraday, though Faraday was the first to make the discovery and publish his results. In his honor, the SI unit of inductance is named the henry.  

He may have also been responsible, indirectly for the mention of the cycloid in Moby-Dick, and it's tautochrone property, that "all bodies gliding along the cycloid, my soapstone for example, will descend from any point in precisely the same time."  

It is almost certain that the limited public school education would not include this fact.  Most high school students today would never be introduced to it.  But in Melville's brief time at the Albany Academy it was said that Herman excelled in "ciphering" and won the school prize.  Perhaps his interest in geometry and such was an outstanding teacher, and former alumni of the Albany Academy, young Joseph Henry.

The old Albany Academy building, known officially as Academy Park by the City School District of Albany, its owner (after the park in which it is located), and formerly known as the Joseph Henry Memorial.






1919 Eugen Otto Erwin Netto (30 June 1848 – 13 May 1919) was a German mathematician. He was born in Halle and died in Giessen.

Netto's theorem, on the dimension-preserving properties of continuous bijections, is named for Netto. Netto published this theorem in 1878, in response to Georg Cantor's proof of the existence of discontinuous bijections between the unit interval and unit square. His proof was not fully rigorous, but its errors were later repaired.

Netto made major steps towards abstract group theory when he combined permutation group results and groups in number theory. He also worked on space-filling curves.




1939 Stanisław Leśniewski (March 30, 1886, Serpukhov – May 13, 1939, Warsaw) was a Polish mathematician, philosopher and logician. Leśniewski belonged to the first generation of the Lwów-Warsaw School of logic founded by Kazimierz Twardowski. Together with Alfred Tarski and Jan Łukasiewicz, he formed the troika which made the University of Warsaw, during the Interbellum, perhaps the most important research center in the world for formal logic. *Wik

The grand staircase that marks the entrance to the World of Knowledge at the University of Warsaw Library culminates with four statues of famous Polish philosophers and thinkers of the Modern period: Kazimierz Twardowski, Jan Łukasiewicz, Alfred Tarski, and Stanisław Leśniewski. These statues are also a modern interpretation of the ancient propylaea and refer back to the porticos of Ancient Greek and Roman temples of science.





1944 William Edward Hodgson Berwick (11 March 1888 in Dudley Hill, Bradford – 13 May 1944 in Bangor, Gwynedd) was a British mathematician, specializing in algebra, who worked on the problem of computing an integral basis for the algebraic integers in a simple algebraic extension of the rationals.*Wik



1983 Otto (Hermann Leopold) Heckmann (23 Jun 1901, 13 May 1983 at age 81) was a German astronomer noted for measuring stellar positions and his studies of relativity and cosmology. He also made notable contributions to statistical mechanics. In 1931, He proved that, under the assumptions that matter is homogeneously distributed throughout the universe and is isotropic (having identical properties in every direction), the theory of general relativity could result in an open, or Euclidean, universe as readily as a closed one. Heckmann organized an international program to photograph and chart the positions of the stars in the Northern Hemisphere, which led to the publication in 1975 of the third German Astronomical Society catalog, Astronomische Gesellschaft Katalog (AGK3). *TIS



1984 Stanislaw Marcin Ulam (13 April 1909 – 13 May 1984)  Polish-American mathematician who played a major role in the development of the hydrogen bomb at Los Alamos. He solved the problem of how to initiate fusion in the hydrogen bomb by suggesting that compression was essential to explosion and that shock waves from a fission bomb could produce the compression needed. He further suggested that careful design could focus mechanical shock waves in such a way that they would promote rapid burning of the fusion fuel. Ulam, with J.C. Everett, also proposed the "Orion" plan for nuclear propulsion of space vehicles. While Ulam was at Los Alamos, he developed "Monte-Carlo method" which searched for solutions to mathematical problems using a statistical sampling method with random numbers. *TIS He is buried in Santa Fe National Cemetery in Santa Fe, New Mexico, USA

“While chatting at the Scottish Caf´e with Borsuk, an outstanding Warsaw topologist, he [Ulam] saw in a flash the truth of what is now called the Borsuk-Ulam theorem. Borsuk had to commandeer all his technical resources to prove it.” For n = 2, this theorem can be interpreted as asserting that some point on the globe has precisely the same weather as its antipodal point. The ‘weather’ has to mean two variables (R2) that vary continuously (f) on the surface (S 2) of the earth. Perhaps temperature and humidity will do? *theoremoftheday.org





2005 George Bernard Dantzig (November 8, 1914 – May 13, 2005) was an American mathematical scientist who made important contributions to operations research, computer science, economics, and statistics.
Dantzig is known for his development of the simplex algorithm, an algorithm for solving linear programming problems, and his work with linear programming, some years after it was invented by the Soviet mathematician & economist Leonid Kantorovich. In statistics, Dantzig solved two open problems in statistical theory, which he had mistaken for homework after arriving late to a lecture of Jerzy Neyman.
Dantzig was the Professor Emeritus of Transportation Sciences and Professor of Operations Research and of Computer Science at Stanford. *Wik






Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell