Thursday, 28 March 2024

On This Day in Math - March 28

  


*George W. Hart, Sculpture

 `The introduction of the cipher 0 or the group concept was general nonsense too, and mathematics was more or less stagnating for thousands of years because nobody was around to take such childish steps ...'.
Alexandre Grothendieck in a letter in 1982 to Ronald Brown

The 87th day of the year; the sum of the squares of the first four primes is 87. \(87 = 2^2 + 3^2 + 5^2 + 7^2 \)

87 = 3 * 29, \(87^2 + 3^2 + 29^2\)  and \( 87^2 - 3^2 - 29^2 \) are both primes

Among Australian cricket players, it seems, 87 is an unlucky score and is referred to as "the devil's number", supposedly because it is 13 runs short of 100.
87 is the third consecutive day that is semiprime (the product of two primes)

And 87 is, of course, the number of years between the signing of the U.S. Declaration of Independence and the Battle of Gettysburg, immortalized in Abraham Lincoln's Gettysburg Address with the phrase "fourscore and seven years ago..."


87 is the largest number that yields a prime when any of the one-digit primes 2, 5 or 7 is inserted between any two digits. The only other such number is 27 (and trivially, the 1 digit numbers). *Prime Curios

5! - 4! - 3! - 2! - 1! = 87. Remember the old puzzle of making numbers with four 4's. What numbers could you make with the first five factorials using only the four basic arithmetic functions between them

EVENTS

In 1747, the fascination with electricity upon reaching the American colonies was the subject of Benjamin Franklin's first of the famous series of letters in which he described his experiments on electricity to Peter Collinson, Esq., of London. He thanked Collison for his “kind present of an electric tube with directions for using it” with which he and others did electrical experiments. “For my own part I never was before engaged in any study that so totally engrossed my attention and my time as this has lately done; for what with making experiments when I can be alone, and repeating them to my friends and acquaintances, who, from the novelty of the thing, come continually in crowds to see them, I have, during some months past, had little leisure for anything else.”*TIS



1764 In a second trial of John Harrison's marine timekeeper, his son William departed for Barbados aboard the Tartar. As with the first trial, William used H4 to predict the ship's arrival at Madeira with extraordinary accuracy. The watch's error was computed to be 39.2 seconds over a voyage of 47 days, three times better than required to win the maximum reward of £20,000. *Royal Museum Greenwich

H4 is housed in silver pair cases some 5.2 inches (13 cm) in diameter. The clock's movement is highly complex for that period, resembling a larger version of the then-current conventional movement





1802 Olbers, while observing the constellation Virgo, had observed a "star" of the seventh-magnitude not found on the star charts. Over the following week he would observe the motion and determined that it was a planet. In early April he sent the data to Gauss to compute the orbit. On the 18th of April, Gauss computed the orbit in only three hours, placing the orbit between Mars and Jupiter. Olbers named the new planetoid Pallas, and predicted there would be others found in the same area. John Herschel dismissed this speculation as "dreams in which astronomers... indulge" but over 1000 such planetoids have been observed. *Dunnington, Gray, & Dohse; Carl Friedrich Gauss: Titan of Science
Pallas, the third largest asteroid in the asteroid belt and the second such object to be discovered, following the discovery of Ceres,discovered on 1 January 1801, by Giuseppe Piazzi. 
In 1596, Johannes Kepler wrote, "Between Mars and Jupiter, I place a planet," in his Mysterium Cosmographicum, stating his prediction that a planet would be found there. While analyzing Tycho Brahe's data, Kepler thought that too large a gap existed between the orbits of Mars and Jupiter to fit Kepler’s then-current model of where planetary orbits should be found.

In an anonymous footnote to his 1766 translation of Charles Bonnet's Contemplation de la Nature, the astronomer Johann Daniel Titius of Wittenberg noted an apparent pattern in the layout of the planets, now known as the Titius-Bode Law. If one began a numerical sequence at 0, then included 3, 6, 12, 24, 48, etc., doubling each time, and added four to each number and divided by 10, this produced a remarkably close approximation to the radii of the orbits of the known planets as measured in astronomical units, provided one allowed for a "missing planet" (equivalent to 24 in the sequence) between the orbits of Mars (12) and Jupiter (48).




1809 Gauss finished work on his Theoria Motus. It explains his methods of computing planetary orbits using least squares. [Springer’s 1985 Statistics Calendar] *VFR
The first step toward least squares may have began with "errors decrease with aggregation rather than increase, perhaps first expressed by Roger Cotes in 1722."
The first clear and concise exposition of the method of least squares was published by Legendre in 1805. The technique is described as an algebraic procedure for fitting linear equations to data and Legendre demonstrates the new method by analyzing the same data as Laplace for the shape of the Earth. Within ten years after Legendre's publication, the method of least squares had been adopted as a standard tool in astronomy and geodesy in France, Italy, and Prussia, which constitutes an extraordinarily rapid acceptance of a scientific technique.

In 1809 Carl Friedrich Gauss published his method of calculating the orbits of celestial bodies. In that work he claimed to have been in possession of the method of least squares since 1795. This naturally led to a priority dispute with Legendre. However, to Gauss's credit, he went beyond Legendre and succeeded in connecting the method of least squares with the principles of probability and to the normal distribution. He had managed to complete Laplace's program of specifying a mathematical form of the probability density for the observations, depending on a finite number of unknown parameters, and define a method of estimation that minimizes the error of estimation. 





1935: Near Roswell, New Mexico, Robert H. Goddard successfully launched the first gyroscopically-stabilized liquid-fueled rocket. In a 20-second flight, the A Series rocket, number A-5, reached an altitude of 4,800 feet (1,463 meters) and traveled 13,000 feet (3,962 meters) down range. Its speed was 550 miles per hour (885 kilometers per hour). During the flight, the rocket corrected its flight path several times. *Today in Aviation History
Dr. Robert H. Goddard with one of his liquid-fueled A-series rockets at Roswell, New Mexico, circa 1935. (National Air and Space Museum Archives, Smithsonian Institution)





In 1946, the Census Bureau and the National Bureau of Standards met to discuss the purchase of a computer. The agencies agreed to buy UNIVAC, the world's first general all-purpose business computer, from Presper Eckert and John Mauchly for a mere $225,000. Unfortunately, UNIVAC cost far more than that to develop. Eckert and Mauchly's venture floundered as the company continued to build and program UNIVACs for far less than the development cost. Eventually, the company was purchased by Remington Rand. *TIS



1949  The phrase "Big Bang" is created. Shortly after 6:30 am GMT on BBC's The Third Program, Fred Hoyle used the term in describing theories that contrasted with his own "continuous creation" model for the Universe. "...based on a theory that all the matter in the universe was created in one big bang ... ". *Mario Livio, Brilliant Blunders
"Suddenly, an explosive expansion began, ballooning our universe outwards faster than the speed of light. This was a period of cosmic inflation that lasted mere fractions of a second — about 10^-32 of a second, according to physicist Alan Guth’s 1980 theory that changed the way we think about the Big Bang forever." *Space.com  
Big Bang Background Radiation *ESA Planck




1959 Germany issued a stamp commemorating the 400th anniversary of the death of Adam Riese [Scott #799] *VFR I understand that the German expression "nach Adam Riese", is still used today. It means "according to Adam Riese" and it is used in saying something is exactly correct.
The X on the stamp with numbers is from Riese's method of checking operations by casting out nines from his book Rechnung auff der linihen  on the use of a counting board, shown on the cover page.
The horizental lines have values of 1, 10, 100, and stones placed between the lines were half the upper line, 5, 50, 500.  
To add for instance, stones for two (or more) numbers were placed on or between the lines to add up to the given values.  Then for every five on a line,  they are replaced with a stone between this line and the one above (so five tens would be replaced by a fifty stone).  Two stones between lines would be replaced with a stone on the line above.  Rules for all the arithmetic operations were included.  


In 2006, a substantial "lost" book of manuscripts by Robert Hooke in his own handwriting was bought for the Royal Society by donations of nearly £1 million. The book was just minutes before going on the auction block when a last-minute purchase agreement was made and kept the precious document in Britain. Hooke is now often overlooked, except for his law of elasticity, although in his time, he was a prolific English scientist and contributed greatly to planning the rebuilding of London after the Great Fire of 1666. The document of more than 520 pages of manuscripts included the minutes of the Royal Society from 1661-82. It had been found in a cupboard in a private house by an antiques expert there to value other items. *TIS



 
BIRTHS
 
1847 Gyula Farkas (28 March 1847 in Sárosd, Fejér County, Hungary - 27 Dec 1930 in Pestszentlorinc, Hungary) He is remembered for Farkas theorem which is used in linear programming and also for his work on linear inequalities. In 1881 Gyula Farkas published a paper on Farkas Bolyai's iterative solution to the trinomial equation, making a careful study of the convergence of the algorithm. In a paper published three years later, Farkas examined the convergence of more general iterative methods. He also made major contributions to applied mathematics and physics, particularly in the areas of mechanical equilibrium, thermodynamics, and electrodynamics.*SAU



1923 Israel Nathan Herstein (March 28, 1923, Lublin, Poland – February 9, 1988, Chicago, Illinois) was a mathematician, appointed as professor at the University of Chicago in 1951. He worked on a variety of areas of algebra, including ring theory, with over 100 research papers and over a dozen books.
He is known for his lucid style of writing, as exemplified by the classic and widely influential Topics in Algebra, an undergraduate introduction to abstract algebra that was published in 1964, which dominated the field for 20 years. A more advanced classic text is his Noncommutative Rings in the Carus Mathematical Monographs series. His primary interest was in noncommutative ring theory, but he also wrote papers on finite groups, linear algebra, and mathematical economics.*Wik



1928 Alexander Grothendieck (28 Mar 1928-13 November 2014) In 1966 he won a Fields Medal for his work in algebraic geometry. He introduced the idea of K-theory and revolutionized homological algebra. Within algebraic geometry itself, his theory of schemes is used in technical work. His generalization of the classical Riemann-Roch theorem started the study of algebraic and topological K-theory. His construction of new cohomology theories has left consequences for algebraic number theory, algebraic topology, and representation theory. His creation of topos theory has appeared in set theory and logic.
One of his results is the discovery of the first arithmetic Weil cohomology theory: the ℓ-adic étale cohomology. This result opened the way for a proof of the Weil conjectures, ultimately completed by his student Pierre Deligne. To this day, ℓ-adic cohomology remains a fundamental tool for number theorists, with applications to the Langlands program.
Grothendieck influenced generations of mathematicians after his departure from mathematics. His emphasis on the role of universal properties brought category theory into the mainstream as an organizing principle. His notion of abelian category is now the basic object of study in homological algebra. His conjectural theory of motives has been behind modern developments in algebraic K-theory, motivic homotopy theory, and motivic integration. *Wik




DEATHS
1678 Claude François Milliet Dechales (1621 in Chambéry, France - 28 March 1678 in Turin, Italy) Dechales is best remembered for Cursus seu mundus mathematicus published in Lyons in 1674, a complete course of mathematics. Topics covered in this wide ranging work included practical geometry, mechanics, statics, magnetism and optics as well as topics outwith the usual topics of mathematics such as geography, architecture, astronomy, natural philosophy and music. In 1678 he published in Lausanne his edition of Euclid, The Elements of Euclid Explained in a New but Most Easy Method: Together with the Use of Every Proposition through All Parts of the Mathematics, written in French by That Most Excellent Mathematician, F Claude Francis Milliet Dechales of the Society of Jesus. This work covers Books 1 to 6, together with Books 11 and 12, of Euclid's Elements. A second edition was published in 1683, then an edition revised by Ozanam was published in Paris in 1753. An English translation was published in London by M Gillyflower and W Freeman, the translation being by Reeve Williams. A second edition of this English translation appeared in 1696. Schaap writes, "Dechales's separate edition of Euclid, long a favourite in France and elsewhere on the Continent, never became popular in England." *SAU



1794 Marie Jean Antoine Nicolas de Caritat, marquis de Condorcet (17 September 1743 – 28 March 1794), known as Nicolas de Condorcet, was a French philosopher, mathematician, and early political scientist whose Condorcet method in voting tally selects the candidate who would beat each of the other candidates in a run-off election. Unlike many of his contemporaries, he advocated a liberal economy, free and equal public education, constitutionalism, and equal rights for women and people of all races. His ideas and writings were said to embody the ideals of the Age of Enlightenment and rationalism, and remain influential to this day. He died a mysterious death in prison after a period of being a fugitive from French Revolutionary​ authorities.*Wik
Condorcet committed suicide by poisoning while in jail so that the republican terrorists could not take him to Paris. *VFR (The St Andrews site has the date of his death one day later.)



1840 Simon Antoine Jean Lhuilier (24 April 1750 in Geneva, Switzerland - 28 March 1840 in Geneva, Switzerland) His work on Euler's polyhedra formula, and exceptions to that formula, were important in the development of topology. Lhuilier also corrected Euler's solution of the Königsberg bridge problem. He also wrote four important articles on probability during the years 1796 and 1797. His most famous pupil was Charles-François Sturm who studied under Lhuilier during the last few years of his career in Geneva. *SAU He won the mathematics section prize of the Berlin Academy of Sciences for 1784 in response to a question on the foundations of the calculus. The work was published in his 1787 book Exposition elementaire des principes des calculs superieurs. It was in this book that he first introduced the "lim." (the period would soon fall out use) notation for the limit of a function. he wrote, "lim.\( \frac{\delta x}{\delta x} \). The symbol reappeared in 1821 in Cours d'Analyse by Augustin Louis Cauchy. *Florian Cajori, The History of Notations on the Calculus.



1850 Bernt Michael Holmboe (23 March 1795 – 28 March 1850) was a Norwegian mathematician. Holmboe was hired as a mathematics teacher at the Christiania Cathedral School in 1818, where he met the future renowned mathematician Niels Henrik Abel. Holmboe's lasting impact on mathematics worldwide has been said to be his tutoring of Abel, both in school and privately. The two became friends and remained so until Abel's early death. Holmboe moved to the Royal Frederick University in 1826, where he worked until his own death in 1850.
Holmboe's significant impact on mathematics in the fledgling Norway was his textbook in two volumes for secondary schools. It was widely used, but faced competition from Christopher Hansteen's alternative offering, sparking what may have been Norway's first debate about school textbooks. *Wik



1874 Peter Andreas Hansen (8 Dec 1795; 28 Mar 1874) Danish astronomer whose most important work was the improvement of the theories and tables of the orbits of the principal bodies in the solar system. At Altona observatory he assisted in measuring the arc of meridian (1821). He became the director (1825) of Seeberg observatory, which was removed to Gotha in a new observatory built for him (1857). He worked on theoretical geodesy, optics, and the theory of probability. The work in celestial mechanics for which he is best known are his theories of motion for comets, minor planets, moon and his lunar tables (1857) which were in use until 1923. He published his lunar theory in Fundamenta ("Foundation") in 1838, and Darlegung ("Explanation") in 1862-64.*TIS



1950 Ernst David Hellinger (30 Sept 1883 in Striegau, Silesia, Germany (now Strzegom, Poland) - 28 March 1950 in Chicago, Illinois, USA) introduced a new type of integral: the Hellinger integral . Jointly with Hilbert he produced an important theory of forms. From 1907 to 1909 he was an assistant at Göttingen and, during this time, he ".. edited Hilbert's lecture notes and Felix Klein's influential Elementarmathematik vom höheren Standpunkte aus (Berlin, 1925) which was translated into English (New York, 1932). 
On November 13, 1938, Hellinger was arrested, taken to the Festhalle, and then put into Dachau concentration camp. However, his friends were able to arrange a temporary job for Hellinger at Northwestern University at Evanston, Illinois, in the United States. He was released from the Dachau camp after six weeks, on condition that he emigrate immediately.

He joined the faculty at Northwestern University as lecturer in Mathematics in 1939. He became a U.S. citizen in 1944. Promoted to professor in 1945, he became emeritus in 1949. He died on March 28, 1950, in Chicago, Illinois, United States.


Years later the story is told that,
Shortly after his arrival at Northwestern, one of the professors in describing Northwest's mathematics program to him remarked that in the honours course Felix Klein's 'Elementary mathematics from an advanced standpoint' was used as a text and "perhaps Hellinger was familiar with it". At this Hellinger ... replied "familiar with it, I wrote it!".
*SAU





Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell


No comments:

Post a Comment