Thursday, 26 November 2020

On This Day in Math - November 26


One of the chief duties of a mathematician in acting as an advisor to scientists is to discourage them from expecting too much of mathematicians.
~Norbert Wiener

The 331st day of the year; 
31, 331, 3331, 33331 are all prime. What percentage of the numbers 33....331 are prime? Is there a pattern? A nice symmetric pic from Jim Wilder@wilderlab:

331 is also the sum of five consecutive primes. It is both a centered Pentagonal number and a centered Hexagonal number.


1607 John Harvard, founder of Harvard College, born in London. Harvard, the oldest university in the U.S., was named for him in 1639. *VFR (The college was actually founded almost two years before Harvard made his deathbed bequest to fund it. The grateful colony changed the name of the college to honor its benefactor.)

1750 Euler presents his famous “Gem”; Vertices + Faces -2 = Edges, in two papers Euler presented several results relating the number of plane angles of a solid to the number of faces, edges, and vertices (he referred to “solid angles”). Euler also classified polyhedra by the number of solid angles they had. According to C. G. J. Jacobi, a treatise with this title was read to the Berlin Academy on November 26, 1750. The proofs were contained in a second paper. According to C. G. J. Jacobi, it might have been read to the Berlin Academy on September 9, 1751. According to the records there, it was presented to the St. Petersburg Academy on April 6, 1752. (There seems to be some question as to whether or not this theorem appears in Descartes.  There is no question, it seems that he made statements that directly lead to the theorem, but Polya, Lakatos, and many others don't find an actual statement of the theorem in his work. I leave this question to the knowledgeable historians of the period to work out the intricacies .)

1789 President George Washington proclaimed Thanksgiving day the first national holiday, acknowledging the nation’s “many and signal favors of Almighty God.” *VFR Washington declared the holiday in an Oct 3 declaration. Other Presidents throughout the years up to the civil war declared days of thanksgiving, not always in the fall. By 1858 proclamations appointing a day of thanksgiving were issued by the governors of 25 states and two territories. President Abraham Lincoln, prompted by a series of editorials written by Sarah Josepha Hale(she is known also as the author of "Mary Had a Little Lamb"), proclaimed a national Thanksgiving Day, to be celebrated on the final Thursday in November 1863. *Wik

1857 An amendment to the Sadlerian Chair to allow teaching of other modern topics beyond Algebra led to an application the same day for the position form Arthur Cayley. His Quickly published resume for the job included 318 of his publications. *A. J. Crilly, Arthur Cayley: Mathematician Laureate of the Victorian Age

1864 Charles Dodgson gives Alice Liddell (rhymes with “fiddle”) a hand-printed copy of Alice’s Adventures under Ground, a work he wrote for her. This was reproduced by Dover in 1965. See 4 July 1862. *VFR

In 1885, the first meteor trail was photographed in Prague, Czechoslovakia. This was part of the Andromedid meteor shower also known as the Bielids because they were caused by Comet Biela. William F. Denning (Bristol, England) noted the activity with rates averaging 100 per hour. On the next evening, 27 Nov, he declared "meteors were falling so thickly as the night advanced that it became almost impossible to enumerate them." Observers with especially clear skies had rates of about one meteor/second or 3600/hour. Meteor showers are produced by small fragments of cosmic debris entering the earth's atmosphere at extremely high speed. The debris originates from the intersection between a planet's orbit and a comet's orbit. *TIS  If someone can supply a digital copy of this first photo, I would be greatly pleased.

1885 Smith Prize winners under new regulations announced in Nature Magazine. A. N. Whitehead gets only honorable mention in the new essay-based Smith's Prize.
And the winners are...."awarded to two essays declared equal in merit, viz. that of Mr. H. E. G. Gallop, Fellow of Trinity College, Second Wrangler in 1883, 1st Division in Part III., 1884, subject, “The Distribution of Electricity on the Circular Disk and Spherical Bowl”; and that of Mr. R. Lachlan, Fellow of Trinity College, 3rd Wrangler, 1883, 1st Division in Part III., 1884, subject “Systems of Circles.” It is further announced that the essay by Mr. C. Chree, Fellow of King’s College, on “Elastic Solids,” and that of Mr. A. N. Whitehead, Fellow of Trinity College, on the “General Equations of Hydrodynamics,” deserved honourable mention." *


1894 Norbert Wiener (26 Nov 1894; 18 Mar 1964) U.S. mathematician, who established the science of cybernetics, a term he coined, which is concerned with the common factors of control and communication in living organisms, automatic machines, and organizations. He attained international renown by formulating some of the most important contributions to mathematics in the 20th century. His work on generalised harmonic analysis and Tauberian theorems won the Bôcher Prize in 1933 when he received the prize from the American Mathematical Society for his memoir Tauberian theorems published in Annals of Mathematics in the previous year. His extraordinarily wide range of interests included stochastic processes, quantum theory and during WW II he worked on gunfire control. *TIS Cybernetics, published in 1948, was a major influence on later research into artificial intelligence. In the book, Wiener drew on World War II experiments with anti-aircraft systems that anticipated the course of enemy planes by interpreting radar images. Wiener also did extensive analysis of brain waves and explored the similarities between the human brain and a modern computing machine capable of memory association, choice, and decision making.*CHM  (Wiener is somewhat revered as the ultimate absent-minded professor.  An anecdote, almost certainly exaggerated, I used to share with my classes went something like this: Wiener had moved to a new address, and his wife knowing of his forgetfulness wrote a note with his new address and put it in his coat pocket.  During the day struck by a mathematical muse he whipped out the piece of paper and scribbled notes on the back, then realizing his idea had been wrong, he tossed the piece of paper away and went about his day.  In the afternoon he returned to his old house out of habit and coming up to the empty house remembered that he had moved, but not where.  As he started to leave a young girl walked up and he stopped here.  "Young lady, I am the famous mathematician Wiener.  Do you know where I live?"   The lass replied, "Yes, father, I'll show you the way home."... )

1895 Bertil Lindblad (26 Nov 1895; 26 Jun 1965) Swedish astronomer who contributed greatly to the theory of galactic structure and motion and to the methods of determining the absolute magnitude (true brightness, disregarding distance) of distant stars. He theorized that the areas around the center of a galaxy revolve and this is why it was flattened. Oort later proved that does indeed happen. He studied the structure and dynamics of star clusters, estimated the Milky Way's galactic mass, the period of our Sun's orbit, confirmed Harlow Shapley's direction and approximate distance to the center of the Galaxy, and developed spectroscopic means of distinguishing between giant and main sequence stars.*TIS

1940 Enrico Bombieri (26 Nov 1940, )Italian mathematician who was awarded the Fields Medal in 1974 for his major contributions to the study of the prime numbers, to the study of univalent functions and the local Bieberbach conjecture, to the theory of functions of several complex variables, and to the theory of partial differential equations and minimal surfaces. "Bombieri's mean value theorem", which concerns the distribution of primes in arithmetic progressions which is obtained by an application of the methods of the large sieve. Between 1979 and 1982 Bombieri served on the executive committee of the International Mathematical Union. Bombieri now works in the United States. In 1996 Bombieri was elected to membership of the National Academy of Sciences.*TIS


1896 Benjamin Apthorp Gould (27 Sep 1824, 26 Nov 1896) American astronomer whose star catalogs helped fix the list of constellations of the Southern Hemisphere Gould's early work was done in Germany, observating the motion of comets and asteroids. In 1861 undertook the enormous task of preparing for publication the records of astronomical observations made at the US Naval Observatory since 1850. But Gould's greatest work was his mapping of the stars of the southern skies, begun in 1870. The four-year endeavor involved the use of the recently developed photometric method, and upon the publication of its results in 1879 it was received as a signicant contribution to science. He was highly active in securing the establishment of the National Academy of Sciences. *TIS

1965 Zoárd Geöcze (1873–1916) was a Hungarian mathematician famous for his theory of surfaces (Horváth 2005:219ff). He was born August 23, 1873 in Budapest, Hungary and died November 26, 1916 in Budapest. *Wik

1968 Georgii Nikolaevich Polozii (23 April 1914 in Transbaikal, Russia - 26 Nov 1968 in Kiev, Ukraine) Georgii Polozii studied at Saratov University which had been founded in 1919. He graduated in 1937 and then was appointed to the teaching staff of the university. In 1949 Polozii was appointed to the University of Kiev and he remained at Kiev until his death in 1968.
Polozii's major pure mathematical contributions were to the theory of functions of a complex variable, approximation theory, and numerical analysis. He also made major contributions to mathematical physics and applied mathematics in particular working on the theory of elasticity. *SAU

1977 Ruth Moufang (10 Jan 1905 in Darmstadt, Germany - 26 Nov 1977 in Frankfurt, Germany) Moufang studied projective planes, introducing Moufang planes and non-associative systems called Moufang loops. *SAU

1981 Machgielis Euwe (20 May 1901 in Watergraafsmeer, near Amsterdam, Netherlands
- 26 Nov 1981 in Amsterdam, Holland) Machgielis Euwe is better known by the name Max Euwe, and he is better known as the world chess champion from 1935 to 1937 than as a mathematician. However, Euwe was indeed a very fine mathematician who concentrated more on his mathematics throughout his life than on his chess. In 1929 he published a mathematics paper in which he constructed an infinite sequence of 0's and 1's with no three identical consecutive subsequences of any length. He then used this to show that, under the rules of chess that then were in force, an infinite game of chess was possible. It had always been the intention of the rules that this should not be possible, but the rule that a game is a draw if the same sequence of moves occurs three times in succession was not, as Euwe showed, sufficient. *SAU

1990 Richard Alan Day (9 Oct 1941 in Sault Ste Marie, Ontario, Canada - 26 Nov 1990 in Thunder Bay, Ontario, Canada) He spent his whole career at Lakeland University in Thunder Bay, being promoted to Associate Professor in 1975 and to full professor five years later. 
Day made many major contributions to lattice theory. One of the first was in the paper A simple solution to the word problem for lattices (1970) where he gave a simple solution to the word problem in free lattices. This paper introduced Day famous doubling construction. *SAU

2015 Amir D. Aczel (November 6, 1950 – November 26, 2015) was an Israeli-born American lecturer in mathematics and the history of mathematics and science, and an author of popular books on mathematics and science.
Aczel was born in Haifa, Israel. Aczel's father was the captain of a passenger ship that sailed primarily in the Mediterranean Sea. When he was ten, Aczel's father taught his son how to steer a ship and navigate. This inspired Aczel's book The Riddle of the Compass.
When Aczel was 21 he studied at the University of California, Berkeley. He graduated with a BA in mathematics in 1975, and received a Master of Science in 1976. Several years later Aczel earned a Ph.D. in statistics from the University of Oregon.
Aczel taught mathematics at universities in California, Alaska, Massachusetts, Italy, and Greece. He married his wife Debra in 1984 and has one daughter, Miriam, and one stepdaughter. He accepted a professorship at Bentley College in Massachusetts where he taught classes on the history of science and the history of mathematics. While teaching at Bentley, Aczel wrote several non-technical books on mathematics and science, as well as two textbooks. His book, Fermat's Last Theorem (ISBN 978-1-56858-077-7), was a United States bestseller and was nominated for a Los Angeles Times Book Prize. Aczel appeared on CNN, CNBC, The History Channel, and Nightline. Aczel was a 2004 Fellow of the John Simon Guggenheim Memorial Foundation and Visiting Scholar in the History of Science at Harvard University (2007). In 2003 he became a research fellow at the Boston University Center for Philosophy and History of Science, and in Fall 2011 was teaching mathematics courses at University of Massachusetts Boston.
He died of cancer on Nov. 26, 2015 in Nîmes, in the south of France. He was 65. *Wik, *Obit
His most recent book was Finding Zero: A Mathematician's Odyssey to Uncover the Origins of Numbers

Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Wednesday, 25 November 2020

On This Day in Math - November 25


The capacity to blunder slightly is the real marvel of DNA.
Without this special attribute, we would still be anaerobic bacteria
and there would be no music.
— Lewis Thomas

The 330th day of the year; if all the diagonals of an eleven sided regular polygon were drawn, they would have 330 internal intersections.

330 is the last year day which is a pentagonal number. It is the sum of fifteen consecutive integers starting with the integer 15. (All Pentagonal numbers follow a similar pattern) The average of all the pentagonal numbers up to 330 is the 15th triangular number.

A set of 11 points around a circle provide the vertices for 330 quadrilaterals.

330 is the sum of five consecutive squares, or of six consecutive primes. 


1658 The prize committee for Pascal’s cycloid problems (see 1 October 1658) decided not to give the prize of sixty Spanish gold doubloons to anyone. [DSB 7, 583] *VFR
In 1658, four years after renouncing mathematics as a vainglorious pursuit, Pascal found himself one day suffering from a painful toothache, and in desperation began to think about the cycloid to take his mind off the pain. Quickly the pain abated, and Pascal interpreted this as a sign from the Almighty that he should proceed to study the cycloid, which he did intensively for the next eight days. During this period he rediscovered most of what had already been learned about the cycloid, and several results that were new. Pascal decided to propose a set of challenge problems, with the promise of a first and second prize to be awarded for the best solutions. Roberval was named as one of the judges. Only two sets of solutions were received, one from Antoine de Lalouvere and another from John Wallis, but Pascal and Roberval decided that neither of the entries merited a prize, so no prizes were awarded. Instead, Pascal published his own solutions, along with an essay on the "History of the Cycloid". *

1731 A letter from Euler to Goldbach on this day includes the first use by Euler of continued fractions. Prior to his use continued fractions had made only scattered appearences. In the same letter he introduced the letter e as the base for the natural logarithms, "(e denotat hic numerum, cujus logarithmus hyperbolicus est=1.)," which Google translates as "(e denotes here the number of out of which the hyperbolic logarithm is equal to 1.)"
According to Maor's book e: The story of a number,:
Euler had already used the letter e to represent the number 2.71828... in one of his earliest works, a manuscript entitled "Meditation upon Experiments made recently on the firing of Cannon," written in 1727 when he was only twenty years old (it was not published until 1862, eighty years after his death). In a letter written in 1731 the number e appeared again in connection with a certain differential equation; Euler defines it as "that number whose hyperbolic logarithm is=1." The earliest appearance in a published work was in Euler's Mechanica (1736), in which he laid the foundations of analytical mechanics.
(My thanks to Dave Richeson who provided resources and tied all this information together for me.)

1804 Gauss, in a letter to his close friend Farkas Bolyai, explains that he does not agree with Bolyai's claim that he had put Euclidean Geometry on Solid Ground, "Bolyai has communicated to Gauss his claim that he has put Euclidean geometry on solid ground."
You desire only my careful and unfettered judgment: it is that your explanation does not satisfy me. I will try to explain the issue (it belongs to the same set of reefs on which my attempts have run aground) with as much clarity as possible. To be sure, I still have hope that, before my time is up, these reefs will permit passage. For the time being I have so many other tasks at hand that I cannot think about this; believe me, it would really make me happy if you were to pull ahead of me and overcome all obstacles. I would then undertake with the greatest joy, with all that is in my power, to defend your accomplishment and bring it to the light of day.
*Stan Burris, Notes on Non-Euclidean Geometry

1901 Richardson's law; Owen Willans Richardson read a paper before the Cambridge Philosophical Society which first announced his work on thermionic emission (the release of electrons from hot metals) and in particular a law which mathematically described how the amount of electron current increased as the temperature of the hot surface was raised. (He had been working at the Cavendish Laboratory only one year since his graduation from Cambridge University.) As recorded in the published Proceedings, in Richardson's words: "If then the negative radiation is due to the corpuscles coming out of the metal, the saturation current s should obey the law s = AT1/2e-b/T." The discovery of Richardson's law earned him the 1928 Nobel Prize for Physics.*TIS

1906 First Audion tube. The first triode was ordered by Lee de Forest who instructed the New York automobile lamp maker, H. W. Candless, to make a glass bulb containing a "grid" wire between a filament and an electrode plate. These specifications extended the Fleming two-element diode valve design previously published in the Proceedings of the Royal Society. The third element - the grid wire - regulated the flow of electrons between the filament and the anode plate, producing an amplification of the variations in a signal voltage applied to the grid. De Forest named his invention the "Audion." Within a few years (1913-1917) he was able to profit from his patents that he sold to AT&T for a total of $390,000.*TIS

1907 First general meeting of the Warsaw Scientific Society. Among the 14 founders of the Society were the two mathematicians Samuel Dickstein (1851–1939) and WLladysLlaw Gosiewski (1844– 1911). [Kuratowski, A Half Century of Polish Mathematics, p. 17] *VFR

1915 Albert Einstein completed his general theory of relativity. [A. Hellemans and B. Bunch, The Timetables of Science, p 429].*VFR

1952 Portugal issued two stamps commemorating the centenary of the birth of the mathematician Francisco Gomes Teixeira (1851-1932). [Scott #751-2]. *VFR

1997 Pixar’s A Bug’s Life and Geri’s Game is released. Pixar Animation Studio released their second feature-length animated film, “A Bug’s Life,” on this day in 1997, preceding it with a computer animated short, “Geri’s Game.” A Bug’s Life, following on the success of Pixar’s Toy Story, was the story of a rag-tag group of bugs who band together to defeat a group of invading grasshoppers. The film would make more than $160 million in its initial US release. Geri’s Game would go on to win the Academy Award for Best Animated Short Film. *CHM


1783 Claude-Louis Mathieu (25 Nov 1783; 5 Mar 1875) French astronomer and mathematician who worked particularly on the determination of the distances of the stars. He began his career as an engineer, but soon became a mathematician at the Bureau des Longitudes in 1817 and later professor of astronomy in Paris. For many years Claude Mathieu edited the work on population statistics L'Annuaire du Bureau des Longitudes produced by the Bureau des Longitudes. His work in astronomy focussed on determining the distances to stars. He published L'Histoire de l'astronomie au XVIII siècle in 1827. *TIS

1814 (Julius) Robert Mayer (25 Nov 1814; 20 Mar 1878) a German physicist. While a ship's doctor sailing to Java, he considered the physics of animal heat. In 1842, he measured the mechanical equivalent of heat. His experiment compared the work done by a horse powering a mechanism which stirred paper pulp in a caldron with the temperature rise in the pulp. He held that solar energy was the ultimate source of all energy on earth, both living and nonliving. Mayer had the idea of the conservation of energy before either Joule or Helmholtz. The prominence of these two scientists, however, diminished credit for Mayer's earlier insights. James Joule presented his own value for the mechanical equivalent of heat. Helmhotlz more systematically presented the law of conservation of energy. *TIS

1816 Lewis Morris Rutherfurd (25 Nov 1816; 30 May 1892) American spectroscopist, astrophysicist and photographer, born in Morrisania, NY, who made the first telescopes designed for celestial photography. He produced a classification scheme of stars based on their spectra as similarly developed by the Italian astronomer. Rutherfurd spent his life working in his own observatory, built in 1856, where he photographed (from 1858) the Moon, Jupiter, Saturn, the Sun, and stars down to the fifth magnitude. While using photography to map star clusters, he devised a new micrometer to measure distances between stars with improved accuracy. When Rutherford began (1862) spectroscopic studies, he devised highly sophisticated diffraction gratings.*TIS

1841 Friedrich Wilhelm Karl Ernst Schröder (25 Nov 1841 in Mannheim, Germany - 16 June 1902 in Karlsruhe, Germany) His important work is in the area of algebra, set theory and logic. His work on ordered sets and ordinal numbers is fundamental to the subject. *SAU

1913 Lewis Thomas (25 Nov 1913; 3 Dec 1993) American physician, researcher, author, and teacher best known for his reflective essays on a wide range of topics in biology. While his specialities are immunology and pathology, in his book, Lives of a Cell, his down-to-earth science writing stresses that what is seen under the microscope is similar to the way human beings live, and he emphasizes the interconnectedness of life. As a research scientist, Thomas made an impact by suggesting that an immunosurveillance mechanism protects us from the possible ravages of mutant cells, an idea later championed by Macfarlane Burnett. He also proposed that viruses have played a major role in the evolution of species by their ability to move pieces of DNA from one individual or species to another. *TIS

1987 Evelyn Merle Nelson (November 25, 1943 – August 1, 1987), born Evelyn Merle Roden, was a Canadian mathematician. Nelson made contributions to the area of universal algebra with applications to theoretical computer science. Nelson's teaching record was, according to one colleague, "invariably of the highest order". However, before earning a faculty position at McMaster, prejudice against her lead to doubts about her teaching ability. Nelson published over 40 papers during her 20-year career before she died from cancer in 1987.
She, along with Cecilia Krieger, is the namesake of the Krieger–Nelson Prize, awarded by the Canadian Mathematical Society for outstanding research by a female mathematician. *Wik


1694 Ismael Boulliau (28 Sept 1605 , 25 Nov 1694) was a French clergyman and amateur mathematician who proposed an inverse square law for gravitation before Newton. Boulliau was a friend of Pascal, Mersenne and Gassendi and supported Galileo and Copernicus. He claimed that if a planetary moving force existed then it should vary inversely as the square of the distance (Kepler had claimed the first power), "As for the power by which the Sun seizes or holds the planets, and which, being corporeal, functions in the manner of hands, it is emitted in straight lines throughout the whole extent of the world, and like the species of the Sun, it turns with the body of the Sun; now, seeing that it is corporeal, it becomes weaker and attenuated at a greater distance or interval, and the ratio of its decrease in strength is the same as in the case of light, namely, the duplicate proportion, but inversely, of the distances that is, 1/d2. *SAU

1913 Sir Robert Stawell Ball​ (1 July 1840 – 25 November 1913) was an Irish astronomer. He worked for Lord Rosse from 1865 to 1867. In 1867 he became Professor of Applied Mathematics at the Royal College of Science in Dublin. In 1874 Ball was appointed Royal Astronomer of Ireland and Andrews Professor of Astronomy in the University of Dublin at Dunsink Observatory. In 1892 he was appointed Lowndean Professor of Astronomy and Geometry at Cambridge University at the same time becoming director of the Cambridge Observatory.[(not exactly at the same time)In 1892 John Couch Adams, the Lowndean Professor of Astronomy and Geometry at Cambridge and the director of the Cambridge Observatory, died. Ball applied ... and was appointed as Lowndean Professor of Astronomy and Geometry but disputes with the university meant that he had to wait a year before he was appointed director of the Cambridge Observatory.*SAU] His lectures, articles and books (e.g. Starland and The Story of the Heavens) were mostly popular and simple in style. However, he also published books on mathematical astronomy such as A Treatise on Spherical Astronomy. His main interest was mathematics and he devoted much of his spare time to his "Screw theory". He served for a time as President of the Quaternion Society. His work The Story of the Heavens is mentioned in the "Ithaca" chapter of James Joyce's Ulysses. *Wik

1936 Édouard (-Jean-Baptiste) Goursat (21 May 1858, 25 Nov 1936) French mathematician and theorist whose contribution to the theory of functions, pseudo- and hyperelliptic integrals, and differential equations influenced the French school of mathematics. The Cauchy-Goursat theorem states the integral of a function round a simple closed contour is zero if the function is analytic inside the contour. Cauchy had established the theorem with the added condition that the derivative of the function was continuous. In 1891, he wrote Leçons sur l'intégration des équations aux dérivées partielles du premier ordre. Goursat's best known work is Cours d'analyse mathématique (1900-10) which introduced many new analysis concepts. *TIS
It is almost certain that l'Hôpital's rule, for finding the limit of a rational function whose numerator and denominator tend to zero at a point, is so named because Goursat named the rule after de l'Hôpital in his Cours d'analyse mathématique . Certainly the rule appears in earlier texts (for example it appears in the work of Euler), but Goursat is the first to attach de l'Hôpital's name to it.*SAU

1937 Alessandro Padoa​ (14 October 1868 – 25 November 1937) was an Italian mathematician and logician, a contributor to the school of Giuseppe Peano. He is remembered for a method for deciding whether, given some formal theory, a new primitive notion is truly independent of the other primitive notions. There is an analogous problem in axiomatic theories, namely deciding whether a given axiom is independent of the other axioms.*Wik

1952 Edward Vermilye Huntington (April 26 1874, Clinton, New York, USA -- November 25, 1952, Cambridge, Massachusetts, USA) was an American mathematician.
Huntington's primary research interest was the foundations of mathematics. He was one of the "American postulate theorists" (the term is Scanlan's), American mathematicians active early in the 20th century (including E. H. Moore and Oswald Veblen) who proposed axiom sets for a variety of mathematical systems. In so doing, they helped found what are now known as metamathematics and model theory.
Huntington was perhaps the most prolific of the American postulate theorists, devising sets of axioms (which he called "postulates") for groups, abelian groups, geometry, the real number field, and complex numbers. His 1902 axiomatization of the real numbers has been characterized as "one of the first successes of abstract mathematics" and as having "filled the last gap in the foundations of Euclidean geometry". Huntington excelled at proving axioms independent of each other by finding a sequence of models, each one satisfying all but one of the axioms in a given set. His 1917 book The Continuum and Other Types of Serial Order was in its day "...a widely read introduction to Cantorian set theory." (Scanlan 1999) Yet Huntington and the other American postulate theorists played no role in the rise of axiomatic set theory then taking place in continental Europe.
In 1904, Huntington put Boolean algebra on a sound axiomatic foundation. He revisited Boolean axiomatics in 1933, proving that Boolean algebra required but a single binary operation (denoted below by infix '+') that commutes and associates, and a single unary operation, complementation, denoted by a postfix prime. The only further axiom Boolean algebra requires is: (a '+b ')'+(a '+b)' = a, now known as Huntington's axiom.
Revising a method from Joseph Adna Hill, Huntington is credited with the Method of Equal Proportions or Huntington-Hill method of apportionment of seats in the U.S. House of Representatives to the states, as a function of their populations determined in the U.S. census. This mathematical algorithm has been used in the U.S. since 1941 and is currently the method used.
In 1919, Huntington was the first President of the Mathematical Association of America, which he helped found. He was elected to the American Academy of Arts and Sciences in 1913, and to the American Philosophical Society in 1933.*Wik

1978 Eduard L. Stiefel (21 April 1909, Zürich – 25 November 1978, Zürich) was a Swiss mathematician. Together with Cornelius Lanczos and Magnus Hestenes, he invented the conjugate gradient method, and gave what is now understood to be a partial construction of the Stiefel–Whitney classes of a real vector bundle, thus co-founding the study of characteristic classes.
Stiefel achieved his full professorship at ETH Zurich in 1948, the same year he founded the Institute for Applied Mathematics. The objective of the new institute was to design and construct an electronic computer (the Elektronische Rechenmaschine der ETH, or ERMETH). *Wik

1988 Dmitrii Evgenevich Menshov (18 April 1892 in Moscow, Russia - 25 Nov 1988)
For his work on the representation of functions by trigonometric series, Menshov was awarded a State Prize in 1951. He was then elected a Corresponding Member of the USSR Academy of Sciences in 1953. In 1958 Menshov attended the International Congress of Mathematicians in Edinburgh and he was invited to address the Congress with his paper On the convergence of trigonometric series. *SAU

2008 Beno Eckmann (March 31, 1917, Bern – November 25, 2008, Zurich) was a Swiss mathematician who was a student of Heinz Hopf.
Born in Bern, Eckmann received his master's degree from Eidgenössische Technische Hochschule Zürich (ETH) in 1931. Later he studied there under Heinz Hopf, obtaining his Ph.D. in 1941. Eckmann was the 2008 recipient of the Albert Einstein Medal.
Calabi–Eckmann manifolds, Eckmann–Hilton duality, the Eckmann–Hilton argument, and the Eckmann–Shapiro lemma are named after Eckmann.*Wik

Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Tuesday, 24 November 2020

On This Day in Math - November 24

Albertus Magnus

To call in the statistician after the experiment is done may be no more than asking hm to perform a postmortem examination: he may be able to say what the experiment died of.
~Fisher, Ronald Aylmer

The 328th day of the year; 328 is the sum of the first fifteen primes. No year day can has more.
It is also is a tau-number since it is divisible by the number of divisors it has.

328 reversed is prime, and it is the sum of the first 15 primes.  It is the last day of the year that will be the sun of the first n primes.


1639 British astronomers Jeremiah Horrocks and William Crabtree became the first observers to record a transit of Venus. Horrocks was just a teenager, and would die at the tender age of twenty-two, but before he did, he ran up several impressive notches in his scientific portfolio. For more on this event, see
this blog by The Renaissance Mathematicus. Applying Kepler's prediction that in 1631, Venus would transit the Sun, Horrocks calculated that these transits occurred not singly but in pairs eight years apart. Thus, Horrocks prepared his equipment for the next transit he had thus predicted for this day. His simple telescope was mounted on a wooden beam, so he could project a solar image onto a piece of paper marked with a six inch graduated circle. From this, he made measurements and calculated that the value for the solar parallax was smaller than previously recorded, and so concluded that the Sun was further away from the Earth than previously thought. *TIS As the image shows, the observation was made at Carr House where he lived at the time.  "Horrocks returned to Toxteth Park (Liverpool) sometime in the summer of 1640 and died suddenly and from unknown causes on 3 January 1641, aged only 22. As expressed by Crabtree, "What an incalculable loss!" *John Wallis  The image is from the

1713 As the 18th century began, even the devoted Newton supporters were finding themselves drawn to the Leibniz notation used on the continent, although the real break would not come for another hundred years.  But in 1713, even the most devout Newtonians were wavering.  On this date, John Kell, a bitter opponent of Leibniz, would use the \( \int \) for integration, but fiercely continued to use the "pricked numerals" of Newton.  \( \dot {x}\) .  *Philosophical Transactions

1759 Lagrange wrote Euler that he believes that he had developed the true metaphysics of the calculus; at that time he seems to have been convinced that the use of infinitesimals was rigorous. Lagrange attempted to prove Taylor’s theorem (the power of which he was the first to observe) and then to develop the entire calculus from it. (Cajori, History of Mathematics, 257) *VFR

1789 Lagrange finished his M´ecanique analytique. In this he lays down the law of virtual work, and from that one fundamental principle, by the aid of the calculus of variations, deduces the whole of mechanics, both of solids and fluids.
The object of the book is to show that the subject is implicitly included in a single principle, and to give general formulae from which any particular result can be obtained. The method of generalized co-ordinates by which he obtained this result is perhaps the most brilliant result of his analysis. Instead of following the motion of each individual part of a material system, as D'Alembert and Euler had done, he showed that, if we determine its configuration by a sufficient number of variables whose number is the same as that of the degrees of freedom possessed by the system, then the kinetic and potential energies of the system can be expressed in terms of those variables, and the differential equations of motion thence deduced by simple differentiation. *Wik

1831 Michael Faraday reads the first of a series of papers on "Experimental Research into Electricity." *Phil. Trans. R. Soc. Lond. January 1, 1832 122:125-162;

1836 A total lunar eclipse occurred which Gauss had promised to show, through the observatory telescope to his friend Ribbentrop, confirmed bachelor, campus eccentric, and absent-minded professor of law. Although it was pouring rain that evening Ribbentrop appeared. Gauss explained that observation was impossible, but Ribbentrop countered, “No, I have my umbrella.” [Eves, Squared, 191◦] *VFR

1845 After Faraday’s discovery of the a between light and magnetism was announced in the papers, Mrs. Jane Marcet, whose book, Conversations on Chemistry, had been influential in Faraday's youth, wrote to ask Faraday for more information. " I have kept back the proof sheets of the ‘Conversation on Electricity,’ which I was this morning revising, until I receive your answer, in hopes of being able to introduce it in that sheet."
The two kept up correspondence throughout her life, and she would contact him for information on the most recent developments in order to update her "Conversations." The last new edition of Conversations on Chemistry came out in 1853, when Marcet was 84 years old!
A more complete story of the influence she had on Faraday, and their relationship is at the *skullsinthestars blogsite.

1847 Barrister to barrister math; 1837's second Wrangler to 1842's Senior Wrangler: J. J. Sylvester writes to Arthur Cayley to inform him that while reading the second volume of Theorie des Nombres that he had found two examples by Legendre that he thought might be "very congenial" to Cayley's present line of thought, "not doubting that it will turn to good account in your able hands." Although their communication was stil in the "My Dear Sir" stage, Sylvester felt he had found a kindred spirit. *Karen Hunger Parshall, James Joseph Sylvester: Jewish Mathematician in a Victorian World

In 1859, The Origin of Species by Means of Natural Selection, Darwin's groundbreaking book, was published in England to great acclaim. The British naturalist, Charles Darwin detailed the scientific evidence he had collected since his voyage on the Beagle in the 1830's. He presented his idea that species are the result of a gradual biological evolution in which nature encourages, through natural selection, the propagation of those species best suited to their environments. He had been prompted to publish at this time by Charles Lyell, who advised him that Alfred Russel Wallace, a naturalist working in Borneo, was approaching the same conclusions. Lyell believed Darwin should publish without further delay to establish priority. *TIS

1864 So as not to miss a lecture, George Boole walked the three miles from his home in Ballintemple to Queen’s College in Cork, Ireland, in a pouring rain. He lectured in wet clothes, caught a cold, and died two weeks later at age 49. [MacHale, George Boole, His Life and Work, p 24]. *VFR

1858 Dedekind discovers his cuts and thereby provides the first correct definition of continuity. [Dauben, p. 48] *VFR

1888 On Thanksgiving Day, six members of the mathematics department at Columbia University met to form a society for the purpose of discussing mathematics and reading papers of mathematical interest. A month later they christened it the New York Mathematical Society. By 1894 the society had attained a national character, so its name was changed to the American Mathematical Society. The six were J. H. Van Amring, the first president, Thomas Scott Fiske, Rees (a professor), Jacoby and Stabler (fellow students with Fiske) and Maclay (a graduate student). *P. Duren (ed), A Century of Mathematics in America, vol. I, pp. 5, 13.

1918 Richard Courant sat down with Ferdinand Springer and signed a contract for the series of books now famous as the “Yellow Series.” *Constance Reid, Courant in Gottingen and New York, p. 72

1982 Sweden issued five stamps honoring Nobel Prize winners Niels Bohr, Erwin Schrodinger, Louis de Broglie, Paul Dirac and Werner Heisenberg. [Scott #1425-9] *VFR Bohr also appears on 500-krone banknote with the portrait of Bohr smoking a pipe since 1997.

2015 President Barack Obama awarded the presidential medal of freedom—America’s highest civilian honor—to a 97-year-old mathematician named Katherine Coleman Goble Johnson. You might not have heard her name in history class, but Katherine did some life-saving work back in 1962. In her job at NASA, she calculated the trajectory for astronaut John Glenn's pioneering space mission to orbit Earth. Katherine co-authored the research and equations that laid out how to send Glenn into orbit and how to bring him back home safely. Johnson is just one part of a cadre of African American women who did crucial calculations for the space workforce during the Cold War. */


1879 Duncan MacLaren Young Sommerville (24 Nov 1879 in Beawar, Rajasthan, India - 31 Jan 1934 in Wellington, New Zealand) Sommerville studied at St Andrews and then had a post as a lecturer there. He left to become Professor of Pure and Applied mathematics at Victoria College, Wellington New Zealand. He worked on non-Euclidean geometry and the History of Mathematics. He became President of the EMS in 1911. *SAU

1909 Gerhard Gentzen (24 Nov 1909 in Greifswald, Germany - 4 Aug 1945 in Prague, Czechoslovakia) Gentzen invented a 'natural deduction' which provided a logic closer to mathematical reasoning than the systems proposed by Frege, Russell and Hilbert.*SAU

1912 Dr. Lyle B. Borst, (Nov 24, 1912 - July 30, 2002) was a nuclear physicist who helped build Brookhaven National Laboratory's nuclear reactor and was an early member of the Manhattan Project.
In 1950, Dr. Borst led the construction of the Brookhaven Graphite Research Reactor, which was the largest and most powerful reactor in the country and the first to be built solely for research and other peacetime uses of atomic energy.
Within the first nine months of operating the reactor, Dr. Borst announced that it had produced a new type of radioactive iodine, which is used in treating thyroid cancer.
In 1952, based on studies of new types of atomic nuclei created in the reactor, Dr. Borst helped explain the mystery behind giant stars, known as supernovae, that burst with the energy of billions of atomic bombs and flare for several years with the brilliance of several million suns.
Dr. Borst found that beryllium 7, an isotope of beryllium that does not occur naturally on earth, is formed in supernovae by the fusion of two helium nuclei. The fusion takes place after the star has used up its hydrogen supply. This reaction absorbs huge quantities of energy, causing the star to collapse in the greatest cosmic explosion known. *NY Times obit.

1925 Simon van der Meer (24 Nov 1925, )Dutch engineer and physicist who along with Italian physicist Carlo Rubbia, discovered the W particle and the Z particle by colliding protons and antiprotons, for which both men shared the Nobel Prize for Physics. These subatomic particles (units of matter smaller than an atom) transmit the weak nuclear force, one of four fundamental forces in nature. The discovery supported the unified electroweak theory put forward in the 1970's. Working at CERN in Switzerland, Van der Meer improved the design of particle accelerators used produce collisions between beams of subatomic particles. He invented a device that would monitor and adjust the particle beam with correcting magnetic fields by a system of 'kickers' placed around the accelerator ring.*TIS

1926 Tsung Dao Lee (24 Nov 1926, ) Chinese-born American physicist who received (with Chen Ning Yang) the 1957 Nobel Prize for Physics for their "penetrating investigation" of violations of the principle of parity conservation (the quality of space reflection symmetry of subatomic particle interactions), which has led to important discoveries regarding the elementary particles. Conservation of parity had previously been regarded as a "law" of nature. (Parity holds that the laws of physics are the same in a right-handed system of coordinates as in a left-handed system.) The theory was subsequently confirmed experimentally by Chien-Shiung Wu in observations of beta decay.*TIS

1944 Veerabhadran Ramanathan (24 Nov 1944, )Indian atmospheric scientist who in 1999 discovered the "Asian Brown Cloud" - wandering layers of air pollution as wide as a continent and deeper than the Grand Canyon. The dark particles in these brown clouds may reduce rainfall, dry the planet’s surface, cool the tropics and reduce sunlight - Global Dimming. In 1975, Ramanathan was the first to demonstrate that CFCs are major greenhouse gases. His calculations showed each CFC molecule in the atmosphere contributes more to the greenhouse effect that over 10,000 molecules of carbon dioxide. In the 1980s, he led a study discovering numerous trace gases contributing to global warming, and a NASA study that demonstrated that clouds had a net global cooling effect on the planet.*TIS

1930 Prosper-René Blondlot (3 July 1849 – 24 November 1930) was a French physicist, best remembered for his mistaken "discovery" of N rays, a phenomenon that subsequently proved to be illusory.
In order to demonstrate that a Kerr cell responds to an applied electric field in a few tens of microseconds, Blondlot, in collaboration with Ernest Bichat, adapted the rotating-mirror method that Léon Foucault had applied to measure the speed of light. He further developed the rotating mirror to measure the speed of electricity in a conductor, photographing the sparks emitted from two conductors, one 1.8 km longer than the other and measuring the relative displacement of their images. He thus established that the speed of electricity in a conductor is very close to that of light.
In 1891, he made the first measurement of the speed of radio waves, by measuring the wavelength using Lecher lines. He used 13 different frequencies between 10 and 30 MHz and obtained an average value of 297,600 km/s, which is within 1% of the current value for the speed of light. This was an important confirmation of James Clerk Maxwell's theory that light was an electromagnetic wave like radio waves.
In 1903, Blondlot announced that he had discovered N rays, a new species of radiation. The "discovery" attracted much attention over the following year until Robert W. Wood showed that the phenomena were purely subjective with no physical origin. The French Academy of Sciences awarded the Prix Leconte (₣50,000) for 1904 to Blondot, although they hedged on the reason, citing the totality of his work rather than the discovery of N-rays.
Little is known about Blondlot's later years. William Seabrook stated in his Wood biography Doctor Wood, that Blondlot went insane and died, supposedly as a result of the exposure of the N ray debacle: "This tragic exposure eventually led to Blondlot's madness and death." Using an almost identical wording this statement was repeated later by Martin Gardner, possibly without having investigated into the subject: "Wood's exposure led to Blondlot's madness and death." However, Blondlot continued to work as a university professor in Nancy until his early retirement in 1910. He died at the age of 81; at the time of the N-ray affair he was nearly 60 years old. *Wik

1978 Warren Weaver​ (b. July 17, 1894 in Reedsburg, Wisconsin d. November 24, 1978 in New Milford, Connecticut) was an American scientist, mathematician, and science administrator. He is widely recognized as one of the pioneers of machine translation, and as an important figure in creating support for science in the United States.*Wik

1980 Henrietta Hill Swope(26 October 1902; Saint Louis, Missouri - 24 November 1980; Pasadena, California)was an American astronomer. She was the eldest child of Gerard and Mary Dayton (Hill) Swope; her mother was the daughter of Thomas Hill, president of Harvard University, 1862-1868. She received her A.B. from Barnard College in 1926 and her A.M. from Radcliffe College in 1928. In 1936, while assistant at the Harvard Observatory (1928-1942), she was a member of the expedition sent jointly by the Harvard Observatory and the Massachusetts Institute of Technology to study the solar eclipse in Soviet Central Asia. During World War II she was staff member of the M.I.T. Radiation Laboratory and then served as a mathematician in the Hydrographic Office of the U.S. Department of the Navy. From 1947 to 1952 she taught astronomy at Barnard College and in 1952 was appointed assistant, later research fellow, at the Mt. Wilson and Palomar Observatories in California. After her retirement in 1968, she continued to work at the Observatories.
HHS was a member of the American Astronomical Society; she received the AAS Annie Jump Cannon Prize in 1968 for her research on photometry and variable stars. She was responsible for developing a new yardstick for measuring the universe: calibrating distance by determining the brightness of stars. She received the Distinguished Alumna Award of Barnard College in 1975 and the Barnard Medal of Distinction in 1980.
The Swope Telescope at the Las Campanas Observatory in Chile is named in her honor, as is asteroid 2168 Swope.

1987 Hans Herbert Schubert (1 May 1908 in Weida, Thüringen Germany - 24 Nov 1987 in Halle, Germany) Schubert was a German mathematician who worked on differential equations. *SAU

2008 John Robert Stallings Jr. (July 22, 1935 – November 24, 2008) was a mathematician known for his seminal contributions to geometric group theory and 3-manifold topology. Stallings was a Professor Emeritus in the Department of Mathematics at the University of California at Berkeley where he had been a faculty member since 1967.  He published over 50 papers, predominantly in the areas of geometric group theory and the topology of 3-manifolds. Stallings' most important contributions include a proof, in a 1960 paper, of the Poincaré Conjecture in dimensions greater than six and a proof, in a 1971 paper, of the Stallings theorem about ends of groups. Stallings was born in the small town of Morrilton, Arkansas.*Wik

Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Monday, 23 November 2020

On This Day in Math - November 23

Whereas Nature does not admit of more than three dimensions ...
it may justly seem very improper to talk of a solid ...
drawn into a fourth, fifth, sixth, or further dimension.

~John Wallis

The 328th day of the year; 328 is the sum of the first fifteen primes. No year day can has more.
It is also is a tau-number since it is divisible by the number of divisors it has.

328 reversed is prime, and it is the sum of the first 15 primes.  It is the last day of the year that will be the sun of the first n primes.

328 = 18^2 + 2^2 = 83^2 - 81^2 = 43^2- 39^2


1654 From 10:30 to 12:30 in the evening Pascal experienced a religious ecstasy that called him to give up his intermittent interest in mathematics and to devote his time to religious contemplation. *VFR

1670 James Gregory writes to John Collins, with the first use of what will come to be called the Newton-Gregory interpolation formula. He includes in the letter two enclosures showing how to apply his method to series for sines and logarithms. *Thomas Harriot’s Doctrine of Triangular Numbers, Beery & Stedall, pg 51-52

1706 Jakob Hermann writes to Leibniz about proof that Machin's series converges to pi. *My uncredited notes (sorry)

1821 Thomas Jefferson writes to West Point Instructor Claudius Crozet to thank him for the gift of a copy of his A Treatise on Descriptive Geometry and praised the book, and the author. Jefferson pronounced Crozet, "by far the best mathematician in the United States." *Natl. Archives, Wik (Crozet is sometimes credited with introducing the blackboard into the US, but it seems to have been common at West Point before his arrival there.)

1823 Janos Bolyai wrote to his father “I have made such wonderful discoveries that I am myself lost in astonishment.” This refers to his discovery of Non-Euclidean Geometry that was published in 1833. *Kline, Mathematics. The Loss of Certainty, p. 83 via *VFR

1834 Astronomer Royal Airy Replies to suggestion that he begin a mathematical search for undiscovered planet that would be Neptune by the Reverend T.J. Hussey.
Hussey had mentioned in his letter how he has heard of a possible planet beyond Uranus and looked for it using a reflector telescope, but to no avail. He presented the idea of using mathematics as a tool in the search but admitted to Airy that he would not be of much help in that regard. On Novemeber 23rd Airy writes back to the reverend and admits he too has been preoccupied with a possible planet. He had observed that Uranus' orbit deviated the most in 1750 and 1834, when it would be at the same point. This was strong evidence for an object pulling on the planet, but Airy felt that until more observations were made no mathematical tools would be of help

In 1889, the first jukebox was installed when an entrepreneur named Louis Glass and his business associate, William S. Arnold, placed a coin-operated Edison cylinder phonograph in the Palais Royale Saloon in San Francisco. The machine, an Edison Class M Electric Phonograph with oak cabinet, had been fitted locally in San Francisco with a coin mechanism invented and soon patented by Glass and Arnold. This was before the time of vacuum tubes, so there was no amplification. For a nickel a play, a patron could listen using one of four listening tubes. Known as "Nickel-in-the-Slot," the machine was an instant success, earning over $1000 in less than half a year. *TIS

1924 New York Times publishes Hubble's new universe: Between 1922–1923, Hubble's observations had proved conclusively that these nebulae were much too distant to be part of the Milky Way and were, in fact, entire galaxies outside our own. This idea had been opposed by many in the astronomy establishment of the time, in particular by the Harvard University-based Harlow Shapley. (Shapley wrote sarcastically that Hubble's letter informing him of his results was “the most entertaining piece of literature I have seen for a long time.” ) Despite the opposition, Hubble, then a thirty-five year old scientist, had his findings first published in The New York Times on November 23, 1924, and then more formally presented in the form of a paper at the January 1, 1925 meeting of the American Astronomical Society. Hubble's findings fundamentally changed the scientific view of the universe.*Wik

1982 Vatican City issued a set of three stamps commemorating the 400th anniversary of the Gregorian Calendar. The image on the Vatican stamp is from the tomb of Pope Gregory XIII in St. Peter's Basilica. The tomb, the work of Camillo Rusconi, includes a relief showing Clavius kneeling before the Pope, presenting his work as the Pope promulgates the new calendar in 1582. *VFR

1982 Poland issued stamps honoring the mathematicians StanisLlaw Zaremba (1863–1942), WacLlaw Sierpi´nski (1882–1969), Zygmunt Janiszewski (1888–1920), and Stefan Banach (1892-1945). [Scott #2542-5]. *VFR

1992 "Computer industry on the skids" With IBM projected to lose $5 billion in 1992, Business Week describes the computer business as "an industry on the skids." The magazine cited layoffs at most established computer companies, such as IBM, as well as newer firms like Sun Microsystems Inc., as evidence that the industry was saturated. A solution, the article concluded, would be for each business to find its proper niche.*CHM


1221 Alfonso X of Castile (23 Nov 1221; 4 Apr 1284) Spanish monarch and astronomer who encouraged the preparation of revised planetary tables (1252), published on the day of his accession to the throne as king of Castile and León. These "Alfonsine Tables," a revision and improvement of the Ptolemaic tables, were the best available during the Middle Ages; they were not replaced by better ones for over three centuries. The astronomical data tabulating the positions and movements of the planets was compiled by about 50 astronomers he had assembled for this purpose. He questioned the complexity of the Ptolemaic model centuries before Copernicus. "If the Lord Almighty had consulted me before embarking on the Creation, I would have recommended something simpler." He also wrote a commentary on alchemy. *TIS

1616 John Wallis (23 Nov 1616, 28 Oct 1703) British mathematician who introduced the infinity math symbol . Wallis was skilled in cryptography and decoded Royalist messages for the Parliamentarians during the Civil War. Subsequently, he was appointed to the Savilian Chair of geometry at Oxford in 1649, a position he held until his death more than 50 years later. Wallis was part of a group interested in natural and experimental science which became the Royal Society, so Wallis is a founder member of the Royal Society and one of its first Fellows. Wallis contributed substantially to the origins of calculus and was the most influential English mathematician before Newton. *TIS

1820 Isaac Todhunter (23 Nov 1820 in Rye, Sussex, England - 1 March 1884 in Cambridge, England) Todhunter is best known for his textbooks and his writing on the history of mathematics. Among his textbooks are Analytic Statics (1853), Plane Coordinate Geometry (1855), Examples of Analytic geometry in Three Dimensions (1858). He also wrote some more elementary texts, for example Algebra (1858), Trigonometry (1859), Theory of Equations (1861), Euclid (1862), Mechanics (1867) and Mensuration (1869).
Among his books on the history of mathematics are A History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace (1865, reprinted 1965) and History of the Mathematical Theories of Attraction (1873). *SAU

1837 Johannes Diederik van der Waals (23 Nov 1837; 9 Mar 1923) Dutch physicist, winner of the 1910 Nobel Prize for Physics for his research on the gaseous and liquid states of matter. He was largely self-taught in science and he originally worked as a school teacher. His main work was to develop an equation (the van der Waals equation) that - unlike the laws of Boyle and Charles - applied to real gases. Since the molecules do have attractive forces and volume (however small), van der Waals introduced into the theory two further constants to take these properties into account. The weak electrostatic attractive forces between molecules and between atoms are called van der Waals forces in his honour. His valuable results enabled James Dewar and Heike Kamerlingh-Onnes to work out methods of liquefying the permanent gases. *TIS

1853 George Bruce Halsted (23 Nov 1853 in Newark, New Jersey, USA - 16 March 1922 in New York, USA) His main interests were the foundations of geometry and he introduced non-euclidean geometry into the United States, both through his own research and writings as well as by his many important translations. Halsted gave commentaries on the work of Lobachevsky, Bolyai, Saccheri and Poincaré and made translations of their works into English. His work on the foundations of geometry led him to publish Demonstration of Descartes's theorem and Euler's theorem in the Annals of Mathematics in 1885. His other main interest was in mathematical education and, as a mathematics educator, he criticised the careless way that mathematics was presented in the textbooks of the time. He contributed over ninety article to the American Mathematical Monthly and wrote many biographies of mathematicians such as Lambert, Farkas Bolyai, Lobachevsky, De Morgan, Sylvester, Chebyshev, Cayley, Hoüel and Klein. *SAU

1887 Henry Gwyn Jeffreys Moseley (23 Nov 1887; 10 Aug 1915) English physicist who experimentally demonstrated that the major properties of an element are determined by the atomic number, not by the atomic weight, and firmly established the relationship between atomic number and the charge of the atomic nucleus. He began his research under Ernest Rutherford while serving as lecturer at the Univ. of Manchester. Using X-ray photographic techniques, he determined a mathematical relation between the radiation wavelength and the atomic numbers of the emitting elements. Moseley obtained several quantitative relationships from which he predicted the existence of three missing elements (numbers 43, 61, and 75) in the periodic table, all of which were subsequently identified. Moseley was killed in action during WW I.*TIS

1917 Elizabeth Scott (November 23, 1917 – December 20, 1988) was an American mathematician specializing in statistics.
Scott was born in Fort Sill, Oklahoma. Her family moved to Berkeley, California when she was 4 years old. She attended the University of California, Berkeley where she studied mathematics and astronomy. There were few options for further study in astronomy, as the field was largely closed to women at the time, so she completed her graduate studies in mathematics. She received her Ph.D. in 1949, and received a permanent position in the Department of Mathematics at Berkeley in 1951.
She wrote over 30 papers on astronomy and 30 on weather modification research analysis, incorporating and expanding the use of statistical analyses in these fields. She also used statistics to promote equal opportunities and equal pay for female academics.
In 1957 Elizabeth Scott noted a bias in the observation of galaxy clusters. She noticed that for an observer to find a very distant cluster, it must contain brighter than normal galaxies and must also contain a large number of galaxies. She proposed a correction formula to adjust for (what came to be known as) the "Scott effect".
The Committee of Presidents of Statistical Societies awards a prize in her honour to female statisticians.*Wik


1604 Francesco Barozzi (in Latin, Franciscus Barocius) (9 August 1537 – 23 November 1604) was an Italian mathematician, astronomer and humanist. Barozzi helped in the general reappraisal of the geometry of Euclid, and corresponded with numerous mathematicians, including the German Jesuit Christopher Clavius. His original works include Cosmographia in quatuor libros distributa summo ordine, miraque facilitate, ac brevitate ad magnam Ptolemaei mathematicam constructionem, ad universamque
astrologiam institutens (1585), which he dedicated to the Duke of Urbino. This work concerns the cosmography and mathematic systems of Ptolemy. Barozzi also discussed 13 ways of drawing a parallel line in his Admirandum illud geometricum problema tredecim modis demonstratum quod docet duas lineas in eodem plano designare, quae nunquam invicem coincidant, etiam si in infinitum protrahantur: et quanto longius producuntur, tanto sibiinuicem propiores euadant (1586).
In his Opusculum: in quo una Oratio et due Questiones, altera de Certitude et altera de Medietate Mathematicarum continentur, Barozzi stressed that "the certitude of mathematics is contained in the syntactic rigor of demonstrations." Barozzi dedicated this work to Daniele Barbaro.
He also wrote Rythmomachia (1572), which he dedicated to Camille Paleotti, a Senator of Bologna, a work that is based on the mathematical game of the same name, also known as "The Philosophers' Game."
As an antiquarian, he copied many Greek inscriptions on Crete. His collection of inscriptions was later inherited by his nephew Iacopo Barozzi (1562–1617), who edited and expanded it. This collection was later acquired in 1629 by the University of Oxford. They are wide-ranging in date and subject-matter and can still be found in the Bodleian Library.*Wik

1817 James Glenie (Oct 1750 in Leslie, Fife, Scotland - 23 Nov 1817 in Chelsea, London, England ) He was an artillery officer when his regiment was sent out to North America in 1775 at the start of the American War of Independence. During his time in North America with the army Glenie worked on mathematics. In fact, even before being sent to North America, he had discovered what he called the antecedental calculus in 1774. The was an attempt to base Newton's fluxional calculus on the binomial theorem rather than on the concept of motion. He published a number of papers on this and other topics; The division of right lines, surfaces and solids being published in the Philosophical Transactions of the Royal Society in 1776 while The general mathematical laws which regulate and extend proportion universally was published in the same journal in the following year. In 1778 the Royal Society published Glenie's paper on the antecedental calculus. In addition to these papers he had also published a book on gunnery entitled The History of Gunnery with a New Method of Deriving the Theory of Projectiles in 1776. For his achievements in mathematics and its applications he was elected a fellow of the Royal Society on 18 March 1779 while he was still based with the army in Quebec.
He died in poverty. *SAU

1826 Johann Elert Bode (19 Jan 1747, 23 Nov 1826) German astronomer best known for his popularization of Bode's law. In 1766, his compatriot Johann Titius had discovered a curious mathematical relationship in the distances of the planets from the sun. If 4 is added to each number in the series 0, 3, 6, 12, 24,... and the answers divided by 10, the resulting sequence gives the distances of the planets in astronomical units (earth = 1). Also known as the Titius-Bode law, the idea fell into disrepute after the discovery of Neptune, which does not conform with the 'law' - nor does Pluto. Bode was director at the Berlin Observatory, where he published Uranographia (1801), one of the first successful attempts at mapping all stars visible to the naked eye without any artistic interpretation of the stellar constellation figures. *TIS

1844 Thomas Henderson (28 Dec 1798, 23 Nov 1844) Scottish astronomer, the first Scottish Astronomer Royal (1834), who was first to measure the parallax of a star (Alpha Centauri, observed at the Cape of Good Hope) in 1831-33, but delayed publication of his results until Jan 1839. By then, a few months earlier, both Friedrich Bessel and Friedrich Struve had been recognized as first for their measurements of stellar parallaxes. Alpha Centauri can be observed from the Cape, though not from Britain. It is now known to be the nearest star to the Sun, but is still so distant that its light takes 4.5 years to reach us. As Scottish Astronomer Royal in 1834, he worked diligently at the Edinburgh observatory for ten years, making over 60,000 observations of star positions before his death in 1844.*TIS

1864 Friedrich Georg Wilhelm von Struve (15 Apr 1793, 23 Nov 1864) German-Russian astronomer, one of the greatest 19th-century astronomers and the first in a line of four generations of distinguished astronomers. He founded the modern study of binary (double) stars. In 1817, he became director of the Dorpat Observatory, which he equipped with a 9.5-inch (24-cm) refractor that he used in a massive survey of binary stars from the north celestial pole to 15°S. He measured 3112 binaries - discovering well over 2000 - and cataloged his results in Stellarum Duplicium Mensurae Micrometricae (1837). In 1835, Czar Nicholas I persuaded Struve to set up a new observatory at Pulkovo, near St. Petersburg. There in 1840 Struve became, with Friedrich Bessel and Thomas Henderson, one of the first astronomers to detect parallax. *TIS

1910 Octave Chanute(18 Feb 1832, 23 Nov 1910) U.S. aeronaut whose work and interests profoundly influenced Orville and Wilbur Wright and the invention of the airplane. Octave Chanute was a successful engineer who took up the invention of the airplane as a hobby following his early retirement. Knowing how railroad bridges were strengthened, Chanute experimented with box kites using the same basic strengthening metod, which he then incorporated into wing design of gliders. Through thousands of letters, he drew geographically isolated pioneers into an informal international community. He organized sessions of aeronautical papers for the professional engineering societies that he led; attracted fresh talent and new ideas into the field through his lectures; and produced important publications. *TIS The town of Chanute, Kansas is named after him, as well as the former Chanute Air Force Base near Rantoul, Illinois, which was decommissioned in 1993. The former Base, now turned to peacetime endeavors, includes the Octave Chanute Aerospace Museum, detailing the history of aviation and of Chanute Air Force base. He was buried in Springdale Cemetery, Peoria, Illinois. *Wik

1942 Stanisław Saks (December 30, 1897 – November 23, 1942) was a Polish mathematician and university tutor, known primarily for his membership in the Scottish Café circle, an extensive monograph on the Theory of Integrals, his works on measure theory and the Vitali-Hahn-Saks theorem.*Wik

1942 Stanisław Zaremba (October 3, 1863 – November 23, 1942) was a Polish mathematician. His research in differential equations, applied mathematics, classical analysis, particularly on harmonic analysis, was widely recognized. He was a mathematician who contributed to the success of the Polish School of Mathematics through his teaching and organizational skills as well as through his research. Zaremba wrote a number of university textbooks and monographies.*Wik

Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell


Sunday, 22 November 2020

Notes on the History of the Pigeonhole Theorem



This is an update of several posts I wrote as late as 2009, and some additional information acquired since then.

Sometimes problems that seem very hard, can be very easy if they are viewed in the right way, and one of those easy ways to make some hard problems manageable is the Pigeon-Hole Principle. Over the last few weeks seems like lots of problems invovling this idea have shown up, so I thought I would bring it to you.
The basic idea is so easy any sixth grader would agree; if you have two boxes, and you are going to put three balls in the boxes, then at least one box will get more than one ball..... "well, Duh!" they answer... and yet... it seems easier to apply than it might be. Now that you know the secret, try these two problems. I'll post the answer down lower on the page where you must not look until you take a few minutes to ponder the problems.
Here is the first from a recent blog I read: "39 people are attending a large, formal dinner, which must of course occur at a single, circular table. The guests, after milling about for a while, sit down to eat. It is then pointed out to them that there are name cards labeling assigned seats, and not a single one has sat in the seat assigned to them. Prove that there is some way to rotate the table so that at least two people are in the correct seats."
This one seems tougher, but really isn't, it just requires a different way of thinking. "Suppose you pick six unique integers from 1 to 1000. Prove that at least two of them must have a difference that is a multiple of five.

I'll give you the proofs of each of these, and then get to the main topic of the history of this important theorem in discrete mathematics

Ok, The Proofs... for number one... Suppose you handed each person a number that was how many seats they needed to move to the right to find their assigned seat. Since no one is at the right seat, the number can not be zero or thirty-nine. SO each of the people has a number between 1 and 38...wait, there are 39 people...two of them (at least) must be the same distance away from their assigned seats.... admit it…..that’s pretty cool.
For number two it is sort of the same idea, but you have to think about how much each number would have for a remainder if you divided them by five. The only possible choices are 0, 1, 2, 3, or 4... but there are six numbers, so two of them have the same remainder...and two numbers that have the same remainder on division by five, are a multiple of five apart.... think of 1,6, 11, etc for remainders of one. If you want to read more about how remainders can play a part in solving problems, see my blog on "casting out sevens"

The basic idea behind this mathematical principle is what students would call common sense; if there are n objects to be placed in m receptacles (with m less than n), at least two of the items must go into the same container. While the idea is common sense, in the hands of a capable mathematician it can be made to do uncommon things. Here is a link to an article by Alexander Bogomolny in which he uses the principle to argue that there must be at least two persons in New York City with the same number of hairs on their head. This "counting hairs" approach dates back to the earliest version of the principal I have ever seen.

The same axiom is often named in honor of Dirichlet who used it in solving Pell's equation. The pigeon seems to be a recent addition, as Jeff Miller's web site on the first use of some math words gives, "Pigeon-hole principle occurs in English in Paul Erdös and R. Rado, A partition calculus in set theory, Bull. Am. Math. Soc. 62 (Sept. 1956)" (although they credit Dedekind for the principle). In a recent discussion on a history group Julio Cabillon added that there are a variety of names in different countries for the idea. His list included "le principe des tiroirs de Dirichlet", French for the principle of the drawers of Dirichlet, and the Portugese "principio da casa dos pombos" for the house of pigeons principle and "das gavetas de Dirichlet" for the drawers of Dirichlet. It also is sometimes simply called Dirichlet's principle and most simply of all, the box principle. Jozef Przytycki wrote me to add, "In Polish we use also:"the principle of the drawers of Dirichlet"
that is 'Zasada szufladkowa Dirichleta' ". I received a note that said, "Dirichlet first wrote about it in Recherches sur les formes quadratiques à coefficients et à indéterminées complexes (J. reine u. angew. Math. (24 (1842) 291 371) = Math. Werke, (1889 1897), which was reprinted by Chelsea, 1969, vol. I, pp. 533-618. On pp. 579-580, he uses the principle."

He doesn't give it a name. In later works he called it the "Schubfach Prinzip" [which I am told means "drawer principle" in German]

The idea has been around much longer than Dirichlet, however, as I found out in June of 2009 when Dave Renfro sent me word that the idea pops up in the unexpected (at least by me) work, "Portraits of the seventeenth century, historic and literary", by Charles Augustin Sainte-Beuve. During his description of Mme. de Longuevillle, who was Ann-Genevieve De Bourbon, and lived from 1619 to 1679 he tells the following story:
"I asked M. Nicole (See below for description of M. Nicole) one day what was the character of Mme. de Longueville's mind; he told me she had a very keen and very delicate mind in knowledge of the character of individuals, but that it was very small, very weak, very limited on matters of science and reasoning, and on all speculative matters in which there was no question of sentiment ' For example,' added he, ' I told her one day that I could bet and prove that there were in Paris at least two inhabitants who had the same number of hairs upon their head, though I could not point out who were those two persons. She said I could not be certain of it until I had counted the hairs of the two persons. Here is my demonstration/ I said to her: M lay it down as a fact that the best-fiimbhed (not sure what this word was supposed to be, ..Plumed??) head does not possess more than 200,000 hairs, and the most scantily furnished head b that which has only 1 hair. If, now you suppose that 200,000 heads all have a different number of hairs, they must each have one of the numbers of hairs which are between 1 and 200,000; for if we suppose that there were 2 among these 200,000 who had the same number of hairs, I win my bet But suppose these 200,000 inhabitants all have a different number of hairs, if I bring in a single other inhabitant who has hairs and has no more than 200,000 of them, it necessarily follows that this number of hairs, whatever it b, will be found between 1 and 200,000, and, consequently, b equal in number of hairs to one of the 200,000 heads. Now, as instead of one inhabitant more than 200,000, there are, in all, nearly 800,000 inhabitants in Paris, you see plainly that there must be many heads equal in number of hairs, although I have not counted them.' Mme. de Longuevillle still could not understand that demonstration could be made of the equality in number of hairs, and she always maintained that the only way to prove it was to count them. "
The M. Nicole who demonstrated the principal was Pierre Nicole, (1625 -1695), one of the most distinguished of the French Jansenist writers, sometimes compared more favorably than Pascal for his writings on the moral reasoning of the Port Royal Jansenists. It may be that he had picked up the principal from Antoine Arnauld, another Port Royal Jansenist who was an influential mathematician and logician. Here is a segment from his bio at the St. Andrews Math History site.
He published Port-Royal Grammar in 1660 which was strongly influenced by Descartes' Regulae. In Port-Royal Grammar Arnauld argued that mental processes and grammar are virtually the same thing. Since mental processes are carried out by all human beings, he argued for a universal grammar. Modern linguistic theorists consider this work as the beginnings of the modern approach their subject. Arnauld's next work was Port-Royal Logic which was another book of major importance. It was also strongly influenced by Descartes' Regulae and also gave a first hand account of Pascal's Méthode. This work presented a theory of ideas which remained important in philosophy courses until comparatively recent times. In 1667 Arnauld published New Elements of Geometry. This work was based on Euclid's Elements and was intended to give a new approach to teaching geometry rather than new geometrical theorems."
He was a correspondent of Gottfried Wilhelm Leibniz, and of course Pascal, who wrote the Pascal "Provincial Letters" in support of Arnauld. I enjoyed the quote about him from the Wikipedia bio: "His inexhaustible energy is best expressed by his famous reply to Nicole, who complained of feeling tired. 'Tired!' echoed Arnauld, 'when you have all eternity to rest in?"
I have not been able to find any thing in Arnauld's personal writing at this time to confirm that he was aware of or used the Pigeon-hole Principle. I have also seen a comment that there is a book by Henry (or Henrik) van Etten (pseudonym of Jean Leurechon, who coined the term thermometer) , circa 1624, which uses the method for problems involving "if there are more pages than words on any page" and various other illustrations. The writer suggests that the problem is in the French version but not the English translation. Would love to hear from someone who can confirm, and perhaps send a digital image.

Around five years after I wrote the above, I was advised of a paper published by A. Heeffer and B. Rittaud that mentioned this Leurechon (They give the date as 1622) contained a single line about the principle, and amazingly, that involved the idea of proving two men had equal hairs on their heads.  " “It is necessary that two men have the same number of hairs, gold, and others.”
Later the authors add, "It is now established that an immensely popular work published at Pont-`a-Mousson in 1624 resulted from these disputationes. Entitled R´ecr´eation mathematicque, this French work is commonly attributed to Jean Leure-chon, but there are good reasons to believe that this attribution is wrong."  This book goes on to explain the solution from the idea posed in the 1622 book.  They say there is an English translation from 1633, which is [Jean Appier Hanzelet],Mathematicall Recreations , T. Cotes (1633).

After the fact

Shortly after I wrote the original post, I had a classroom encounter with a student who presented me with another teaching moment.

A young man in one of my classes, obviously trying to improve his A+ by sucking up to the teacher, mentioned that he had read my recent blog on the pigeon-hole principle. He went on to suggest that he really doubted the idea that 39 people could randomly seat themselves and ALL be in the wrong seat. "It just seems VERY unlikely." he suggested.

Rather than tell him the answer, I set him the task of simulating the activity with a deck of cards. Pull out any suit, say the spades, and really shuffle the remaining cards well. Now we need to decide on an order for the remaining suits, so let clubs be the numbers one to thirteen in order from Ace, two, up to King for thirteen. Then the ace of diamonds can be 14, up through the King of diamonds for 26. Finally the ace of hearts is 27 up to the king of hearts for 39. Now turn over the cards and as you do count, one, two, etc... and if you get a card that is where it should be, stop.. they didn't all sit in the wrong chairs. You need not go on forever, just ten or so trials should give you an idea of whether the event is really, really uncommon, or not so very uncommon. (I now realize an easier way to do this would be to have two decks of cards, lay 39 out in one row in order, then from the shuffled deck, lay the cards one at a time under where they should appear.)

I didn't tell him that I knew the probability (or a good approximation), and that he should probably get three or four trials in a string of ten shuffles in which none of the cards landed in the right place. Such a mis-ordering of the cards was just the idea behind the first critical study of the idea we now call derangements by Leonhard Euler, the great Swiss mathematician. Euler was studying the probability of winning in the game of rencontre, now called "coincidences" in his paper "Calcul de la Probabilite dans le jeu de Rencontre", published around 1751.

So what did Euler discover? Well for larger values of N, say 39 or so, the probability of having a perfect mis-sorting of the items approaches 1/e, or about 36.8%, more than a third of the time. It is not an unusual event at all. For smaller numbers you can find the probability by using the idea shown here for six items..
. This can be rewritten more easily using the factorial notation as P= 1/2! - 1/3! + 1/4! - 1/5! + 1/6! which is only a tiny bit above 36.8%, already very close to the 1/e value given above for the limiting value. If the number of items is even, the series will be a little more than 1/e, and if it is odd (and the last term is subtracted) then the probability will be a little below 1/e, with the propbability approaching 1/e as a limit as n gets greater and greater.

My student got two completely mismatched sets of 39, and expressed surprise that it was higher than he would have thought, but he didn't sound convinced that what had occurred was not just an unusual anomaly (or else he thought I might have rigged it somehow?)

I decided to simulate a lot more times than would be practical with a deck of cards, so I cranked up Fathom, a wonderful simulation software by the folks at Key Curriculum, and had it repeat the experiment of seating the 39 people at random 1000 times, and then count how many landed in the right place. The results are shown in the graph below.

It happened that no one landed in the right place 371 times.... Hmmmm, I guess Euler got it right.

Comments about additional sources related to this are always welcomed.