Wednesday, 4 February 2026

On This Day in Math - February 4

   

Archimedes *http://www.w-volk.de/museum


Technical skill is mastery of complexity while creativity is mastery of simplicity.

~ Sir Erik Christopher Zeeman

The 35th day of the year; There are 35 hexominos, the polyominoes made from 6 squares. *Number Gossip
(I only recently learned that, Although a complete set of 35 hexominoes has a total of 210 squares, which offers several possible rectangular configurations, it is not possible to pack the hexominoies into a rectangle.)



and another gem from Jim,  @wilder that is . 
  For days 34 & 35: 3435 = 3³+4⁴+3³+5⁵ *@wilderlab

The longest open uncrossed (dosn't cross it's own path) knight's path on an 8x8 chessboard is 35 moves.   (longest cycle(end where you start) is only 32 moves)

In Base 35 (A=10, B=11, etc) NERD is Prime, \(23*35^3+14*35^2+27*35+13 = 1,004,233 \)
*Chaw wrote to suggest 36 as a more natural base for letters and numbers combined, and added that "Nerdiest" is prime in that base.    

EVENTS
1600 Johannes Kepler arrives at Benatek Castle near Prague, where Tycho Brahe had moved his observatory, and retinue, after his benefactor King Frederick drank himself to death. *Timothy Ferris, Coming of Age in the Milky Way    Thony Christie wrote in response to the quote above that, "I suspect Timothy Ferris is making shit up. Frederick didn't drink himself to death." Great to have an accomplished historical scholar on my reading list who can keep me straight. Thanks Thony.

1703 46 of the 47 Ronin commit seppuku (ritual suicide) as recompense for avenging their master's death. . This I mention here because one of the 47, was the greatest Asian mathematician of his age, Shigekiyo Matsumura, who among other things, approximated the value of pi as 3.141592648, which is accurate to eight significant figures..."
More of the story here.

I received a correction from a commenter that "The mathematician's name was Muramatsu Shigekiyo (村松 茂清, 1608 – 1695); he was not in the Ako incident, his son in law apparently was one of the 47 samurai, though.  
The very kind Arjen Dijksman connected me with Japanese Physicist Tasuo Tabata who gave me some detail.  It seems that  Matsumura might be more appropriately called Shigekiyo Muramatsu.  He did write the sanso, and all the math things described seem to be a modest description of his contributions.  However, Professor Tabata tells me that he was NOT one of the 47 Ronin.  He is, however, connected to the story. The professor says, "Shigekiyo had only a daughter. Her husband Hidenao and their son Takanao joined the 47 ronin. --"... So now, I guess I'm down to wanting a picture of the 47 Ronin from Sengakuji Temple. And if anyone knows where the grave of Shigekiyo Muramatsu is located, and/or has a picture I would love to have one.





1751 Franklin electrocutes a turkey, opines culinary improvement:
My Respects to Mr. Watson. He desir’d you to enquire what Success we had in our Attempts to kill a Turkey by the Electrical Strokes. Please to acquaint him, that we made several Experiments on Fowls this Winter; That we found two large thin glass Jars, gilt (holding each about 6 Gallons, and taking 2000 Turns of a Globe of 9 Inches Diameter to charge them full, when the Globe works very well, and will charge a common half pint Vial with 50 Turns) were sufficient to kill common Hens outright; but the Turkies, tho’ thrown into violent Convulsions, and then lying as dead for some Minutes, would recover in less than a quarter of an Hour. However, having added Mr. Kinnersley’s Jarrs and mine together, in all 5, tho’ not fully charg’d, we kill’d a Turky with them of about 10 lb.wt. and suppose they would have kill’d a much larger. I conceit that the Birds kill’d in this Manner eat uncommonly tender.
*Franklin papers

1753 Writing about his Experiments and Observations on Electricity made at Philadelphia in America, a work Diderot called the best example of the experimental art with which he was acquainted, Benjamin Franklin (in a letter to John Perkins) boasted that he had “not, with some of our learned moderns, disguised [his] nonsense in Greek, clothed it in algebra, or adorned it with fluxions.” *Thomas L. Hankins, Jean d’Alembert, p 4 (via VFR) (This is in contrast to the quote by Lelande that d'Alembert "had never held a prism in his hand.")



1824, J.W. Goodrich introduced rubber galoshes to the public and little boys and girls discovered the joy of splashing through mud puddles and keeping their shoes dry. *Twisted History  (or as they say across the pond, Wellies)  I find it a little strange that Macintosh developed his waterproof raincoat in exactly the same year (but don't know what month).

1841 First recorded reference to "Groundhog Day" in America:
When German settlers arrived in the 1700s, they brought a tradition known as Candlemas Day, which has an early origin in the pagan celebration of Imbolc. It came at the mid-point between the Winter Solstice and the Spring Equinox. Superstition held that if the weather was fair, the second half of Winter would be stormy and cold. For the early Christians in Europe, it was the custom on Candlemas Day for clergy to bless candles and distribute them to the people in the dark of Winter. A lighted candle was placed in each window of the home. The day's weather continued to be important. If the sun came out February 2, halfway between Winter and Spring, it meant six more weeks of wintry weather.

The earliest American reference to Groundhog Day can be found at the Pennsylvania Dutch Folklore Center at Franklin and Marshall College:

February 4, 1841 - from Morgantown, Berks County (Pennsylvania) storekeeper James Morris' diary..."Last Tuesday, the 2nd, was Candlemas day, the day on which, according to the Germans, the Groundhog peeps out of his winter quarters and if he sees his shadow he pops back for another six weeks nap, but if the day be cloudy he remains out, as the weather is to be moderate."

According to the old English saying:
If Candlemas be fair and bright,
Winter has another flight.
If Candlemas brings clouds and rain,
Winter will not come again.
*Stormfax.com

In 1868, Charles Darwin began writing his book The Descent of Man and Selection in Relation to Sex. He was now 69 years old, working in his home in Downe, England. *TIS

1883 Feb. 4, 1883: Heard from Mr. Caldecott, who would like to draw for me, but is too deeply engaged to undertake anything at present. I must try to engage him for some future time, and could then feel encouraged to work definitely at a new book. Apparently he never did. Does anyone have information that Dodgson was disappointed with his illustrators? *Lewis Carroll’s Diaries @DodgsonDiaries, *Greg Priest @greg_m_priest






1884  On this day in 1884, the minutes of the Committee on the Course and Statutes of Columbia College record that Winifred Edgerton Merrill was to be allowed to use their telescope:
... access to the Observatory and the use of its instruments ... with the understanding that she will render, from time to time, such assistance in the practical work of the Observatory as may be in her power.
Later Merrill told her son:-
... that a condition of her admission was to dust the astronomical instruments and so comport herself as not to disturb the men students.  *SAU  (More about her here)



1961 Sputnik 7 launches into Earth orbit.  This was the first Soviet attempt at a Venus probe. The probe was successfully launched into Earth orbit with a SL-6/A-2-e (Molniya 8K78) launcher. The launch payload consisted of an Earth orbiting launch platform (Tyazheliy Sputnik 4) and the Venera probe. The fourth stage (a Blok L Zond rocket) was supposed to launch the Venera probe towards a landing on Venus after one Earth orbit but ignition failed, probably due to a fault in the power supply to the guidance system, the PT-200 DC transformer had not been designed to work in a vacuum. *NASA


1967   U.S. launches Lunar Orbiter 3.  It was designed primarily to photograph areas of the lunar surface for confirmation of safe landing sites for the Surveyor and Apollo missions. It was also equipped to collect selenodetic, radiation intensity, and micrometeoroid impact data.
<
1995 The Connect Four game was mathematically solved first by James D. Allen (Oct 1, 1988), and independently by Victor Allis (Oct 16, 1988). First player can force a win. Strongly solved by John Tromp's 8-ply database (Feb 4, 1995). Weakly solved for all boardsizes where width+height is at most 15 (Feb 18, 2006). *Wik

*Gamehouse cafe




BIRTHS


1896 Friedrich (Hermann) Hund (4 Feb 1896 - 31 Mar 1997) was a German physicist known for his work on the electronic structure of atoms and molecules. He introduced a method of using molecular orbitals to determine the electronic structure of molecules and chemical bond formation. His empirical Hund's Rules (1925) for atomic spectra determine the lowest energy level for two electrons having the same n and l quantum numbers in a many-electron atom. The lowest energy state has the maximum multiplicity consistent with the Pauli exclusion principle. The lowest energy state has the maximum total electron orbital angular momentum quantum number, consistent with rule. They are explained by the quantum theory of atoms by calculations involving the repulsion between two electrons. *TIS



1903 Sir Oliver Graham Sutton CBE FRS (4 February 1903 – 26 May 1977) was a Welsh mathematician and meteorologist, notable particularly for theoretical work on atmospheric diffusion, boundary layer turbulence, and for his direction of the UK Meteorological Office.
From 1926 to 1928 he was a lecturer at University College of Wales in Aberystwyth before joining the UK Meteorological Office as an assistant. He was seconded to Shoeburyness to work on the meteorological effects on gunnery practices and then transferred to Porton Down. There he undertook a project on atmospheric turbulence and diffusion which quantified the effect of meteorological conditions on the distribution of gas at ground level, findings which could not be released until after the war. Whilst working at Porton Down he was put in charge of tests related to Operation Vegetarian, which involved the release of anthrax spores over the uninhabited Gruinard Island as part of a biological warfare project.

When the war ended, he was made Chief Superintendent of the Radar Research and Development Establishment, Malvern, a position he held until 1947, when he was appointed Professor of Mathematics at the Royal Military College of Science, Shrivenham, Wiltshire. He was Director-General of the UK Met Office from 1953 to 1965 and Vice-President of the University College of Wales, Aberystwyth from 1967.
He was elected a Fellow of the Royal Society in March 1949. He was awarded CBE in 1950 for his distinguished scientific services to the government.

He was elected president of the Royal Meteorological Society from 1953 to 1955 and awarded their Symons Gold Medal for 1959. He was knighted in 1955.

In 1958 Sutton was invited to co-deliver the Royal Institution Christmas Lecture. In 1968 he was awarded the prestigious International Meteorological Organization Prize from the World Meteorological Organization *Wik






1906 Clyde William Tombaugh (4 Feb 1906 on Ranch near Streator, Illinois - 17 Jan 1997) was an American astronomer who discovered what was then recognized as the planet Pluto, which he photographed on 23 Jan 1930, the only planet discovered in the twentieth century, after a systematic search instigated by the predictions of other astronomers. Tombaugh was 24 years of age when he made this discovery at Lowell Observatory in Flagstaff, Ariz. He also discovered several clusters of stars and galaxies, studied the apparent distribution of extragalactic nebulae, and made observations of the surfaces of Mars, Venus, Jupiter, Saturn, and the Moon.Born of poor farmers, his first telescope was made of parts from worn-out farming equipment. *TIS
From my personal blog after a visit to Mars Hill, Flagstaff, Az. (much material from Wikipedia)
In the late 19th and early 20th century, observers of Mars drew long straight lines that appeared on the surface between 60 degrees north and south of the martian equator. Italian astronomer Giovanni Schiaparelli called these lines canali, which became canals in English. Lowell extended this observation to a theory that Mars had polar ice caps that would melt in the martian spring and fill the canals. He even extended the theory to include intelligent life on Mars that had designed the canals.
Eventually it became clear that there were no martian canals, but Mars hill went on to be the sight where a self educated Kansas schoolboy found his dream of working in astronomy in 1929, when the observatory director, V M Slipher, "handed the job of locating Planet X to Clyde Tombaugh, a 23-year-old Kansas man who had just arrived at the Lowell Observatory after Slipher had been impressed by a sample of his astronomical drawings."
On the nights of Jan 23 and 30th of January, 1830, he found a planet in the images that he thought was the Planet X. "The discovery made front page news around the world. The Lowell Observatory, who had the right to name the new object, received over 1000 suggestions, from "Atlas" to "Zymal". Tombaugh urged Slipher to suggest a name for the new object quickly before someone else did. Name suggestions poured in from all over the world. Constance Lowell proposed Zeus, then Lowell, and finally her own first name. These suggestions were disregarded.
The name "Pluto" was proposed by Venetia Burney (later Venetia Phair), an eleven-year-old schoolgirl in Oxford, England. Venetia was interested in classical mythology as well as astronomy, and considered the name, one of the alternate names of Hades, the Greek god of the Underworld, appropriate for such a presumably dark and cold world. She suggested it in a conversation with her grandfather Falconer Madan, a former librarian of Oxford University's Bodleian Library. Madan passed the name to Professor Herbert Hall Turner, who then cabled it to colleagues in America. The object was officially named on March 24, 1930."
Among the many awards Tombaugh received was a scholarship to the Univ of Kansas, where he would eventually earn a Bachelors and Masters Degree. It is said that the Astronomy Dept head refused to allow him to take the introductory astronomy class because it would be undignified for the discoverer of a planet.
Tombaugh died on January 17, 1997, when he was in Las Cruces, New Mexico, at the age of 90. A small portion of his ashes were placed aboard the New Horizons spacecraft. The container includes the inscription: "Interned (sic) herein are remains of American Clyde W. Tombaugh, discoverer of Pluto and the solar system's 'third zone'. Adelle and Muron's boy, Patricia's husband, Annette and Alden's father, astronomer, teacher, punster, and friend: Clyde W. Tombaugh

1925 Sir Erik Christopher Zeeman FRS (born 4 February 1925  – 13 February 2016), is a Japanese-born British mathematician known for his work in geometric topology and singularity theory. His main contributions to mathematics were in topology, particularly in knot theory, the piecewise linear category, and dynamical systems.
Zeeman is known among the wider scientific public for his contribution to, and spreading awareness of catastrophe theory, which was due initially to another topologist, René Thom, and for his Christmas lectures about mathematics on television in 1978. He was especially active encouraging the application of mathematics, and catastrophe theory in particular, to biology and behavioral sciences.*Wik



1926 Jaroslav Hájek (4 Feb 1926 in Podebrady, Bohemia (now Czech Republic) - 10 June 1974 in Prague, Czechoslovakia) He was among the pioneers of unequal probability sampling. The name "Hájek predictor" now labels his contributions to the use of auxiliary data in estimating population means. In 1967 Hájek published (jointly with Z Sidak) Theory of rank tests but it was a work which had in fact been written four years before in 1963. Their methods use three lemmas of Le Cam in order to treat rank statistics under local alternatives and they established the efficiency of rank tests. *SAU



1927 Rolf William Landauer (4 Feb 1927; 27 Apr 1999) German-born American physicist known for his formulation of Landauer's principle concerning the energy used during a computer's operation. Whenever the machine is resetting for another computation, bits are flushed from the computer's memory, and in that electronic operation, a certain amount of energy is lost. Thus, when information is erased, there is an inevitable "thermodynamic cost of forgetting," which governs the development of more energy-efficient computers. While engineers dealt with practical limitations of compacting ever more circuitry onto tiny chips, Landauer considered the theoretical limit, that if technology improved indefinitely, how soon will it run into the insuperable barriers set by nature?*TIS



1948 Ken Thompson Is Born.  Thompson, who with Dennis Ritchie, developed UNIX at AT&T Bell Laboratories, is born. The UNIX operating system combined many of the timesharing and file management features offered by Multics, from which it took its name. (Multics, a projects of the mid - 1960s, represented the first effort at creating a multi-user, multi-tasking operating system.) The UNIX operating system quickly secured a wide following, particularly among engineers and scientists. *CHM



1948 Irena Lasiecka (February 4, 1948 - ) is a Polish-American mathematician, a Distinguished University Professor of mathematics and chair of the mathematics department at the University of Memphis. She is also co-editor-in-chief of two academic journals, Applied Mathematics & Optimization and Evolution Equations & Control Theory.

Lasiecka earned her Ph.D. in 1975 from the University of Warsaw under the supervision of Andrzej Wierzbicki. In 2014, she became a fellow of the American Mathematical Society "for contributions to control theory of partial differential equations, mentorship, and service to professional societies."

Her specific areas of study are partial differential equations and related control theory, non-Linear PDEs, the optimization theory, calculus of variations, and boundary stabilization.

Irena Lasiecka was born and raised in Poland, where she received her initial background in mathematics. She studied math for many years at the University of Warsaw, where she earned her Master of Science degree in applied mathematics in 1972. A few years later, she received her PhD from the same university in the same field of study.

After receiving her PhD, Lasiecka started to transfer her knowledge of Applied Mathematics to others in addition to more personal studying and research. Her first teaching job was at the Polish Academy of Sciences in 1975, and she later ventured to the United States a few years later, teaching at the University of California, Los Angeles. She has been teaching in the US ever since.

Optimization is the mathematical practice of finding the maximum or minimum values for a specific function. It has many real-world uses, and is a common practice for people of many different professions.

The work of Lasiecka involves the optimization differential systems. These involve an optimization problems over functions, with a constraint that relates a function to its derivatives. She has written extensively about this topic in her collaborative work Optimization Methods in Partial Differential Equations.






DEATHS

1615 Giambattista della Porta (1 November 1535 Vico Equense (near Naples), Italy
- 4 February 1615 Naples, Italy) was an Italian scholar who worked on cryptography and also on optics. He claimed to be the inventor of the telescope although he does not appear to have constructed one before Galileo.
In 1563, della Porta published De Furtivis Literarum Notis, a work about cryptography. In it he described the first known digraphic substitution cipher. Charles J. Mendelsohn commented, "He was, in my opinion, the outstanding cryptographer of the Renaissance. Some unknown who worked in a hidden room behind closed doors may possibly have surpassed him in general grasp of the subject, but among those whose work can be studied he towers like a giant."
Della Porta invented a method which allowed him to write secret messages on the inside of eggs. During the Spanish Inquisition, some of his friends were imprisoned. At the gate of the prison, everything was checked except for eggs. Della Porta wrote messages on the egg shell using a mixture made of plant pigments and alum. The ink penetrated the egg shell which is semi-porous. When the egg shell was dry, he boiled the egg in hot water and the ink on the outside of the egg was washed away. When the recipient in prison peeled off the shell, the message was revealed once again on the egg white.

Della Porta was the founder of a scientific society called the Academia Secretorum Naturae (Accademia dei Segreti). This group was more commonly known as the Otiosi, (Men of Leisure). Founded sometime before 1580, the Otiosi were one of the first scientific societies in Europe and their aim was to study the "secrets of nature." Any person applying for membership had to demonstrate they had made a new discovery in the natural sciences.
His private museum was visited by travelers and was one of the earliest examples of natural history museums. It inspired the Jesuit Athanasius Kircher to begin a similar, even more renowned, collection in Rome.
*SAU *Wik



1774 Charles-Marie de La Condamine (27 Jan 1701, 4 Feb 1774) French naturalist and mathematician who became particularly interested in geodesy (earth measurement). He was put in charge by the King of France of an expedition to Ecuador to measure a meridional arc at the equator (1735-43). It was wished to determine whether the Earth was either flattened or elongated at its poles. He then accomplished the first scientific exploration of the Amazon River (1743) on a raft, studying the region, and brought the drug curare to Europe. He also worked on establishment of a universal unit of length, and is credited with developing the idea of vaccination against smallpox, later perfected by Edward Jenner. However, he was almost constantly ill and died in 1773, deaf and completely paralyzed.*TIS



1895 Thomas Penyngton Kirkman FRS (31 March 1806 – 3 February 1895) was a British mathematician. Despite being primarily a churchman, he maintained an active interest in research-level mathematics, and was listed by Alexander Macfarlane as one of ten leading 19th-century British mathematicians. Kirkman's schoolgirl problem, an existence theorem for Steiner triple systems that founded the field of combinatorial design theory, is named after him.
Kirkman's first mathematical publication was in the Cambridge and Dublin Mathematical Journal in 1846, on a problem involving Steiner triple systems that had been published two years earlier in the Lady's and Gentleman's Diary by Wesley S. B. Woolhouse. Despite Kirkman's and Woolhouse's contributions to the problem, Steiner triple systems were named after Jakob Steiner who wrote a later paper in 1853. Kirkman's second research paper paper, in 1848, concerned hypercomplex numbers.
In 1850, Kirkman observed that his 1846 solution to Woolhouse's problem had an additional property, which he set out as a puzzle in the Lady's and Gentleman's Diary:
Fifteen young ladies in a school walk out three abreast for seven days in succession: it is required to arrange them daily, so that no two shall walk twice abreast.
This problem became known as Kirkman's schoolgirl problem, subsequently to become Kirkman's most famous result. He published several additional works on combinatorial design theory in later years. Kirkman also studied the Pascal lines determined by the intersection points of opposite sides of a hexagon inscribed within a conic section. Any six points on a conic may be joined into a hexagon in 60 different ways, forming 60 different Pascal lines. Extending previous work of Steiner, Kirkman showed that these lines intersect in triples to form 60 points (now known as the Kirkman points), so that each line contains three of the points and each point lies on three of the lines. *Wik





1928 Hendrik Antoon Lorentz (18 Jul 1853 - 4 Feb 1928) Dutch physicist who shared (with Pieter Zeeman) the Nobel Prize for Physics in 1902 for his theory of the influence of magnetism upon electromagnetic radiation phenomena. The theory was confirmed by findings of Zeeman and gave rise to Albert Einstein's special theory of relativity. From the start, Lorentz made it his task to extend James Clerk Maxwell's theory of electricity and of light. Already in his doctor's thesis, he treated the reflection and refraction phenomena of light from this new standpoint. His fundamental work in the fields of optics and electricity revolutionized conceptions of the nature of matter. In 1878, he published an essay relating the velocity of light in a medium, to its density and composition. *TIS



*Wik 

1974 Satyendra Nath Bose
 (1 Jan 1894; 4 Feb 1974) Indian physicist and mathematician who collaborated with Albert Einstein to develop a theory of statistical quantum mechanics, now called Bose-Einstein statistics. In his early work in quantum theory (1924), Bose wrote about the Planck black-body radiation law using a quantum statistics of photons, Plank's Law and the Light Quantum Hypothesis. Bose sent his ideas to Einstein, who extended this technique to integral spin particles. Dirac coined the name boson for particles obeying these statistics. Among other things, Bose-Einstein statistics explain how an electric current can flow in superconductors forever, with no loss. Bose also worked on X-ray diffraction, electrical properties of the ionosphere and thermoluminescence. *TIS





2003 Jean Brossel ( 15 August 1918 in Périgueux , France - 4 February 2003 in France)developed with Alfred Kastler the technique of optical pumping at origin of lasers. *Arjen Dijksman ‏@materion

Brossel is known for his work on optical pumping with Alfred Kastler, with whom he founded in 1951 the spectroscopic laboratory at ENS (Laboratoire de Spectroscopie Hertzienne), which now is called the Laboratoire Kastler-Brossel. Brossel was the co-director and then in 1972 after Kastler's resignation the director.

In his hometown of Périgueux a square is named after him. *Wik





2004 Valentina Mikhailovna Borok (9 July 1931, Kharkiv, Ukraine, USSR–4 February 2004, Haifa, Israel) was a Soviet Ukrainian mathematician. She is mainly known for her work on partial differential equations.
Valentina Borok had a talent for math even in her high school years. So in 1949, with the advice of her high school teachers Borok started to study Mathematics at Kyiv State University. There she met Yakov Zhitomirskii, who would be her husband until her death. During her stay at Kyiv State University, Borok, along with her future husband, started her research in the field of mathematics under the supervision of the mathematics department supervisor, Georgii Shilov. Her undergraduate thesis on distribution theory and the applications to the theory of systems of linear partial differential equations was found to be extraordinary and was published in a top Russian journal. This thesis was later selected in 1957 to be part of the first volumes of American Mathematical Society translations.*Wik



2010 Daniel Jay Rudolph (Oct 3, 1949–Feb 4, 2010) was a mathematician who was considered a leader in ergodic theory and dynamical systems. He studied at Caltech and Stanford and taught postgraduate mathematics at Stanford University, the University of Maryland and Colorado State University, being appointed to the Albert C. Yates Endowed Chair in Mathematics at Colorado State in 2005. He jointly developed a theory of restricted orbit equivalence which unified several other theories. He founded and directed an intense preparation course for graduate math studies and began a Math circle for middle-school children. Early in life he was a modern dancer. He died in 2010 from amyotrophic lateral sclerosis, a degenerative motor neuron disease.
He founded and directed the SPIRAL program at Maryland, an intensive six-week preparation for graduate studies in mathematical sciences. It was acknowledged by the American Mathematical Society with an award for "Mathematics Programs That Make a Difference" in 2008.  *Wik



2018  Alan Baker FRS (19 August 1939 – 4 February 2018) was an English mathematician, known for his work on effective methods in number theory, in particular those arising from transcendental number theory.
His interests were in number theory, transcendence, linear forms in logarithms, effective methods, Diophantine geometry and Diophantine analysis.
Baker generalised the Gelfond–Schneider theorem, which itself is a solution to Hilbert's seventh problem.
In 2012 he became a fellow of the American Mathematical Society. He has also been made a foreign fellow of the National Academy of Sciences, India.



2025 William Browder (January 6, 1934 – February 4, 2025) was an American mathematician, who specialized in algebraic topology, differential topology and differential geometry. He served as president of the American Mathematical Society from 1989 to 1991.

William Browder was born in Harlem, New York City on January 6, 1934, the son of Raisa (née Berkmann), a Russian Jewish woman from Saint Petersburg, and American Communist Party leader Earl Browder, from Wichita, Kansas. His father had moved to the Soviet Union in 1927, where he met and married Raisa. Their first two sons, Felix and Andrew, were born in Moscow in 1931. William attended local public schools in Yonkers for early schooling and graduated from the Massachusetts Institute of Technology with a B.S. degree in 1954. He was a instructor at the University of Rochester from 1957 to 1958 and at Cornell University from 1958 until 1963. In August 1957, his original thesis fell apart when his advisor, John Coleman Moore, found an issue with the idea. However, William came up with a new idea which was titled Homology of Loop Spaces. He received his Ph.D. from Princeton University in 1958, using the dissertation.

From 1964 onwards, Browder was a professor at Princeton University; he was chair of the mathematics department at Princeton from 1971 to 1973. He was editor of the journal Annals of Mathematics from 1969 to 1981, and president of the American Mathematical Society from 1989 to 1991.

Browder was elected to the United States National Academy of Sciences in 1980, the American Academy of Arts and Sciences in 1984, and the Finnish Society of Sciences and Letters in 1990. In 1994, a conference was held at Princeton in celebration of his 60th birthday. A conference was held at Princeton on the occasion of his retirement in 2012. Browder advised 30 Ph.D. students in his career as well as multiple undergraduate students. *Wik 
An Oft-told story about him at Princeton is:
As a young faculty member at Princeton in the early 1960s, Browder quickly developed a reputation for intellectual intensity and uncompromising standards. One story often told by his former students concerns a graduate seminar where a student proudly presented what seemed to be a new result in homotopy theory.
The student finished the talk to polite applause. After a short pause, Browder quietly said something like:

“Yes, that’s interesting. But it isn’t a theorem yet.”

When the student asked what was missing, Browder pointed to a subtle gap—an implicit assumption about a map being smoothable that looked completely harmless, and that everyone else in the room had missed. Browder then sketched, on the spot, a counterexample showing that the argument failed unless an additional condition was imposed.

What impressed people was not just that he found the gap, but how quickly he located it, and how deeply it cut into the foundations of the argument. The student later said that moment permanently changed how he read papers and wrote proofs.  *PB notes





Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Tuesday, 3 February 2026

More on Pi and the 47 Ronin

 



A few years ago I wrote this post... Since then I have learned enough to add an addendum at the bottom...
-------------------------------------------------------------------------------------------------------------
If you take the Asakusa Line from Shinagawa, just one stop away you will come to one of the most famous shrines in all of Tokyo, the Sengakuji Temple. It isn't the biggest, prettiest, or most ornate, but it is rich with the kind of history the Japanese love. This is the resting place of the 47 Ronin, one of Japan's most popular samurai stories.


"The story has all the elements for a Hollywood production: a good, noble guy who dies unfairly; a corrupt court official and cunning villain who is disliked by everyone but seems to be always ahead of the game; the good guy’s loyal subordinates who are totally determined to avenge their master’s death at whatever price, even with their own lives... In the end, the story has sparked the imagination and inspired the utmost respect from an entire nation for over 300 years."[Luis Estrada's Travel Blog]

I came across a mathematical reference to the story in a March 1908 article in the American Mathematical Monthly I received recently from Dave Renfro.

"In Tokyo, at the Buddhist temple of Sengakuji lie buried the forty-seven Ronin, the national heroes of feudal Japan. Just within the gate, in a two-storied building, swords, armor and other relics of these heroes are shown on payment of a fee. By the side of the path leading to the tombs is a well with the inscription, 'Here they washed it.' No one in Japan needs to be told that it was the bloody head they were bringing to the grave of their lord, that dead master for whom they considered it the highest privilege thus to forfeit all their lives. The popular reverence for these heroes is still attested not only by the incense perpetually kept burning before their tombs but in stranger fashion by the fresh visiting cards constantly left upon their graves. [To someone who is still there, do the Japanese still leave these visiting cards?]"

"All the world knows their exploit, but who knows that one of them, Shigekiyo Matsumura, (or "Shigekiyo Muramatsu") was the greatest Asiatic mathematician of his age, who in his work Sanso, published in 1663, calculated the length of one side of a regular inscribed polygon of 32768 or 215 sides, obtaining 0.000095873798655313483 and thence for the value of pi 3.141592648, which is accurate to seven places of decimals, to eight significant figures..."

I would be thrilled if any of the folks who still read this in the Tokyo area would send a digital picture of the tomb of Matsumura so that I can add it to this note.


ADDENDUM -----------------------------------


The very kind Arjen Dijksman connected me with Japanese Physicist Tasuo Tabata who gave me some detail.  It seems that  Matsumura might be more appropriately called Shigekiyo Muramatsu.  He did write the sanso, and all the math things described seem to be a modest description of his contributions.  However, Professor Tabata tells me that he was NOT one of the 47 Ronin.  He is, however, connected to the story. The professor says, "Shigekiyo had only a daughter. Her husband Hidenao and their son Takanao joined the 47 ronin. --"... So now, I guess I'm down to wanting a picture of the 47 Ronin from Sengakuji Temple. And if anyone knows where the grave of Shigekiyo Muramatsu is located, and/or has a picture I would love to have one.
Professor Tabata has written the details he found in slightly more detail here.

Thanks again to professor Tabata and Arjen for their help.

On This Day in Math - February 3

  

*varlikmuzik.com


Euclid might be an extra course for learned men, like Homer.
But Euclid for children is barbarous.

~Oliver Heaviside

The 34th day of the year; 34 is the smallest integer such that it and both its neighbors are the product of the same number of primes.

and another gem from Jim, Wilder that is . 

  For days 34 & 35: 3435 = 3³+4⁴+3³+5⁵
These are sometimes called Munchausen numbers. 1 and 3435 are the only two below 5000

34 is the smallest number which can be expressed as the sum of two primes in four ways.*Prime Curios

The Buddhist Sulve Sutras of the fourth or fifth century BC approximate \( \sqrt{2}\) as 17/12 (This same ratio is found many times on the Acropolis).  The actual instructions given by Baudhayana was"Increase the side by its third part, and this third by its own fourth, decreased by its 34th".   \( \sqrt{2}= s + \frac{s}{3} + \frac{s}{3*4} -\frac{s}{3*4*34} \) . (This result, 577/408 is a solution to the Pell equation.

A 4x4 magic square using the integers 1 to 16 has a magic constant of 34. An early example is in the tenth century Parshvanath Jain temple in Khajuraho. The image below was taken by Debra Gross Aczel, the wife of the late Amir D. Aczel who used the image in his last book, Finding Zero. 4x4 magic squares were written about in India by a mathematician named Nagarjuna as early as the first century.




EVENTS

1692 De la Pryme records in his diary that Newton had a fire in his study that destroyed the manuscript of his Optics. “Every one thought he would have run mad; he was so troubled ... *VFR C. Huygens diary has an entry mentioning that he had been told "Newton had become deranged in his mind..." over the fire by Colin. He later related the same to Leibniz.*R. Smith, The Friend, 1829; pg 410
The historical story is that Newton's dog, Diamond, had overturned a candle and set the documents afire.





1673(1672 os) Leibniz writes to Oldenburg describing his “accidental” meeting with the mathematician John Pell at the house of Robert Boyle. They discussed infinite series and after Leibniz described his work on the topic, Pell informed him that Nicholas Mercator had already written extensively on the topic. *Gerhart, The Early Mathematical Manuscripts of Leibniz, pg 162 On his return to France, Leibniz acquired Mercator's Book.






1806 Lagrange presented an attempt to prove Euclid’s parallel postulate to the mathematical and physical classe of the Institute National (as the Acad´emie des Sciences was known during the French Revolutionary Period). Here is how Biot, who, incidentally, died on this date in 1862 (see below), recalled the embarrassing incident in 1837: “Then one day Lagrange took out of his pocket a paper which he read at the Acad´emie [sic], and which contained a demonstration of the famous Postulatum of Euclid, relative to the theory of parallels. This demonstration rested on an obvious paralogism, which appeared as such to everybody; and probably Lagrange also recognized it as such during his lecture. For, when he had finished, he put the paper in his pocket, and spoke no more of it. A moment of universal silence followed, and one passed immediately to other concerns. [Grattan-Guiness, 1990, p. 263] *VFR In his "A Budget of Paradoxes, De Morgan described the event thus:"Lagrange, in one of the later years of his life, imagined that he had overcome the difficulty. He went so far as to write a paper, which he took with him to the Institute, and began to read it. But in the first paragraph something struck him which he had not observed: he muttered Il faut que j'y songe encore,("I shall have to think it over again.") and put the paper in his pocket. *Augustus De Morgan. A Budget of Paradoxes, Volume I .




1817  The first known publication of the Chinese Puzzle we now call Tangram was published in London on Feb 3 of this  by James Leuchar.  It featured a set of nine wooden tiles with a mahogany box and a set of 47 cards showing challenges to make with the tiles.  The images to depict were common English items.

The puzzle had suddenly become very popular, and by the end of the month another but it only had one small section (four paragraphs) and the remainder seemed to be copied from a Chinese book, This came with seven tiles, seemingly like most modern sets.


*Puzzle Museum




1851 In the Meridian Hall at the Paris Observatory, invited scientist of Paris watched the Earth rotate on its axis as indicated by Foucault’s 11 meter long pendulum centered on the meridian line. You may see the same pendulum swinging today in the Musee de Arts et Metiers on the rue Saint-Martin in Paris. Foucault also presented his “sine law” for the period it takes the pendulum to sweep a full circle at any given latitude. *Amir D Aczel, Pendulum, pg 90-103

In 1862, as a boy almost 15 yrs old, Thomas Edison (1847-1931), became the first publisher of a newspaper produced and sold on a moving train. He had set up a small press in the baggage car of the Grand Trunk Railroad train from Port Huron to Detroit, Mich. Already obsessed with telegraphy, he worked out the logistics of getting advance news. His weekly Grand Trunk Herald, a single sheet measuring 7-in. x 8-in., included local news and advertisements for his fathers store. He had been selling candy and newspapers on commission on that train run since age 12. Now, promoting his own newspaper he earned more. Edison became renowned as a pioneering boy journalist. At its peak, he sold about 200 copies a day to train riders. *TIS


1879 The organizers of the “International Centennial of Light” in the United States, preparing to celebrate the 100th anniversary of the invention of the light bulb by Thomas Edison on Oct. 21, 1979, were a bit surprised to learn that the British were organizing their own "Electric Lamp Centenary,” and that they were honoring not Edison, but Swan. The English festivities were to begin almost 8 months earlier, on Feb. 3, 1979, commemorating the date that Swan demonstrated his light bulb to an audience in his home city of Newcastle-on-Tyne. Swan, it turns out, had been trying to develop an electric bulb since 1845. Unlike Edison 30 years later, Swan avoided metal filaments, because they fused and burned up. By 1855, Swan had settled on carbon as the ideal filament. But because vacuum pumps were not very good in 1855, the carbon filaments oxidized and burned out much too quickly. Swan gave up and turned to photography, inventing the carbon print photographic process in the 1860s and manufacturing dry photographic plates in the early 1870s. Meanwhile, someone finally invented a decent vacuum pump, and in 1877, Swan returned to his light bulb experiments. Now the carbon filaments in his high-vacuum bulbs continued to glow for a long time. He demonstrated his light bulb to a crowd of 700 in Newcastle on Feb. 3, 1879, and then went out and electrified his house, and then an entire street in Newcastle.
In 1880, Swan began manufacturing light bulbs. The Edison people came over to England and threatened a lawsuit for patent infringement, and quickly discovered that they had no grounds, and that if they pursued a suit, the Edison patents would almost certainly be invalidated, since Swan's work preceded his. So instead of suing Swan's company, they merged with it, forming the Edison and Swan Company, which manufactured bulbs, using the brand name Ediswan, right up until the 1930s 




1885  For many living mathematicians and scientist, Edwin Abbott's wonderful book Flatland, a Romance in Many Dimensions, is loved and treasured. It did not however, find smooth sailing after it came to print in 1884.  Only a few months after thr publishing the New York Times printed this review:"A very puzzling book and a very distressing one, and to be enjoyed by about six, or at the outside seven, persons in the whole of the United States and Canada."

The book was discovered again after Albert Einstein's general theory of relativity was published, which brought to prominence the concept of a fourth dimension. Flatland was mentioned in a letter by William Garnett entitled "Euclid, Newton and Einstein" published in Nature on 12 February 1920. In this letter, Abbott is depicted, in a sense, as a prophet due to his intuition of the importance of time to explain certain phenomena:

Some thirty or more years ago a little jeu d'esprit was written by Dr. Edwin Abbott entitled Flatland. At the time of its publication it did not attract as much attention as it deserved... If there is motion of our three-dimensional space relative to the fourth dimension, all the changes we experience and assign to the flow of time will be due simply to this movement, the whole of the future as well as the past always existing in the fourth dimension.

The Oxford Dictionary of National Biography subsequently revised his biography, and as of 2020 it states that [Abbott] "is most remembered as the author of Flatland: A Romance of Many Dimensions".







1958 NEW MATH. New mathematics is found in Time magazine of Feb. 3, 1958, in the heading, "The new mathematics" [OED].
New math is found again in an article which appeared in numerous newspapers on Sept. 25, 1960: “But the ‘new math’ is being promoted energetically by such influential bodies as the U. S. Office of Education, the National Science Foundation, the National Education Association, the Mathematical Association of America, the College Entrance Examination Board and the Carnegie Corporation.”
* Jeff Niller
New Mathematics or New Math was a dramatic but temporary change in the way mathematics was taught in American grade schools, and to a lesser extent in European countries and elsewhere, during the 1950s–1970s.
Topics introduced in the New Math include set theory, modular arithmetic, algebraic inequalities, bases other than 10, matrices, symbolic logic, Boolean algebra, and abstract algebra.
Parents and teachers who opposed the New Math in the U.S. complained that the new curriculum was too far outside of students' ordinary experience and was not worth taking time away from more traditional topics, such as arithmetic. The material also put new demands on teachers, many of whom were required to teach material they did not fully understand. Parents were concerned that they did not understand what their children were learning and could not help them with their studies. In an effort to learn the material, many parents attended their children's classes. In the end, it was concluded that the experiment was not working, and New Math fell out of favor before the end of the 1960s, though it continued to be taught for years thereafter in some school districts.

And as I always try to do when this topic comes up, let's look back with love and a smile with Tom Lehrer



1961 Historian Gerald Holton echoed the words of Newton (5 February 1675/76) in opening a session of a meeting where three of the four speakers were Nobel laureates in Physics when he said “How good it is to be able to sit at the feet of giants on whose shoulders we stand.” *The Physics Teacher, 26 (1988), p 264

1965  According to Interesting Times, the official Ted Nelson newsletter, he first used the word hyper-text (and hyper-media) in 1965
In a Vassar College Miscellany News article dated February 3, 1965, "Professor Nelson Talk Analyzes P.R.I.D.E.," written by Laurie Wedeles, Nelson is quoted as having used the word "hyper-text." 
In 1967 he wrote, "(...)'Hypertext' is a recent coinage. 'Hyper-' is used in the mathematical sense of extension and generality (as in 'hyperspace,' 'hypercube') rather than the medical sense of 'excessive' ('hyperactivity'). There is no implication about size— a hypertext could contain only 500 words or so. 'Hyper-' refers to structure and not size."






1966
 Luna 9, internal designation Ye-6 No.13, was an unmanned space mission of the Soviet Union's Luna program. On 3 February 1966 the Luna 9 spacecraft became the first spacecraft to achieve a soft landing on the Moon, or any planetary body other than Earth, and to transmit photographic data to Earth from the surface of another planetary body. *Wik





1966, the U.S. launched its first operational weather satellite, ESSA-1 to provide cloud-cover photography to the U.S. National Meteorological Center for preparation of operational weather analyses and forecasts. The spacecraft was an 18-sided polygon, 42-in. diameter, 22-in. high and weight 305-lb. It was made of aluminum alloy and stainless steel, then covered with 9100 solar cells. The solar cells served to charge the 63 batteries. Its two cameras were mounted 180 degrees opposite each other along the cylindrical side of the craft. A camera could be pointed at some point on Earth every time the satellite rotated along its axis. ESSA-1 was able to view the weather of each area of the globe, photographing a given area at the exact same local time each day.



1997 The Sciencenter's Sagan Planet Walk is a walkable scale model of the Solar System, located in Ithaca, New York. The model scales the entire Solar System—both planet size and distances between them—down to one five billionth of its actual size. The exhibition was originally created in 1997 in memory of Ithaca resident and Cornell Professor Carl Sagan.

Consisting of eleven obelisks situated along a 1.18 km (0.73 mi) path through the streets of downtown Ithaca, the original Planet Walk leads from the Sun at Center Ithaca to Pluto at the Ithaca Sciencenter.
From Uranus, visitors follow Willow Avenue northwest and cross the Carl Sagan bridge at Adams street to reach the Neptune Obelisk. The Carl Sagan Bridge, built in 2000, features nine circular windows adorned with the signs of the nine planets. The obelisk for Neptune is located just across the bridge in Conley Park.  *Wik 



BIRTHS

1774 Karl Brandan Mollweide (3 Feb 1774 in Wolfenbüttel, Brunswick, now Germany - 10 March 1825 in Leipzig, Germany) He is remembered for his invention of the Mollweide projection of the sphere, a map projection which he produced to correct the distortions in the Mercator projection, first used by Gerardus Mercator in 1569. Mollweide announced his projection in 1805. While the Mercator projection is well adapted for sea charts, its very great exaggeration of land areas in high latitudes makes it unsuitable for most other purposes. In the Mercator projection the angles of intersection between the parallels and meridians, and the general configuration of the land, are preserved but as a consequence areas and distances are increasingly exaggerated as one moves away from the equator. To correct these defects, Mollweide drew his elliptical projection; but in preserving the correct relation between the areas he was compelled to sacrifice configuration and angular measurement.
The second piece of work to which Mollweide's name is attached today is the Mollweide equations which are sometimes called Mollweide's formulas. These trigonometric identities ares

sin(½(A - B)) / cos(½C) = (a - b) / c, and

cos(½(A - B)) / sin(½C) = (a + b) / c,

where A, B, C are the three angles of a triangle opposite to sides a, b, c, respectively. These trigonometric identities appear in Mollweide's paper Zusätze zur ebenen und sphärischen Trigonometrie (1808). *SAU




1862 William Jackson Humphreys (3 Feb 1862; 10 Nov 1949) American atmospheric physicist who applied basic physical laws to explain the optical, electrical, acoustical, and thermal properties and phenomena of the atmosphere. His book, Physics of the Air (1920), covers most of classical physical meteorology.*TIS
Humphreys was born in Gap Mills, Virginia, to Jackson and Eliza Ann (née Eads) Humphreys. He studied physics at Washington & Lee University in Virginia and later at Johns Hopkins University in Baltimore, where he earned his Ph.D. in 1897, studying under Henry Augustus Rowland.

He worked in the fields of spectroscopy, atmospheric physics and meteorology. In the field of spectroscopy he found the shift of spectral lines under pressure. In atmospheric physics he found a very good model for the stratosphere in 1909. He wrote numerous books, including a textbook titled Physics of the Air, first published in 1920 and considered a standard work of the time, though it was last published in 1940.  He held some teaching positions at universities. In 1913, he proposed that volcanic eruptions might produce subsequent global cooling. *Wik





1831 Ogden Nicholas Rood, an American physicist, was born Feb. 3, 1831. In 1879, Rood published Modern Chromatics, with Applications to Art and Industry, a lengthy title that would have been better phrased as Color Theory for Artists. There had been quite a few books published on color theory before Rood’s, but they tended to be written for other physicists and were lacking in practical applications. So the artistic community remained unaffected by the color theory of physicists.

Title page, Ogden Rood, Modern Chromatics, 1879 (Linda Hall Library)

Title page, Ogden Rood, Modern Chromatics, 1879 (Linda Hall Library)



Rood not only explained complementary colors and how they might be useful for the painter, he also provided a color wheel that used artist’s pigments, rather than the physicist’s ideal colors, and he even prescribed what pigments should be on an artist's palette, and how they should be arranged (for those interested, his advised colors were, in this order from the thumb-hole: gamboge, Indian yellow, chrome yellow, vermilion, red lead, carmine, Hoffmann’s violet, cobalt blue, cyan blue, Prussian blue, and emerald green). *Linda Hall Org



*bugman123.com
1893 Gaston Maurice Julia (February 3, 1893 – March 19, 1978) was a French mathematician who devised the formula for the Julia set. His works were popularized by French mathematician Benoit Mandelbrot; the Julia and Mandelbrot fractals are closely related.*Wik A report of his bravery during WWI during which he lost his nose:
January 25, 1915, showed complete contempt for danger. Under an extremely violent bombardment, he succeeded despite his youth (22 years) to give a real example to his men. Struck by a bullet in the middle of his face causing a terrible injury, he could no longer speak but wrote on a ticket that he would not be evacuated. He only went to the ambulance when the attack had been driven back. It was the first time this officer had come under fire.
When only 25 years of age, Julia published his 199 page masterpiece Mémoire sur l'iteration des fonctions rationelles which made him famous in the mathematics centres of his day. The beautiful paper, published in Journal de Math. Pure et Appl. 8 (1918), 47-245, concerned the iteration of a rational function f. Julia gave a precise description of the set J(f) of those z in C for which the nth iterate f n(z) stays bounded as n tends to infinity. (These are the Julia Sets popularized by Mandelbrot) *SAU

1898 Pavel Samuilovich Urysohn, Pavel Uryson (February 3, 1898, Odessa – August 17, 1924, Batz-sur-Mer) is best known for his contributions in the theory of dimension, and for developing Urysohn's Metrization Theorem and Urysohn's Lemma, both of which are fundamental results in topology. His name is also commemorated in the term Menger-Urysohn dimension and in the term Urysohn integral equation. The modern definition of compactness was given by him and Pavel Alexandrov in 1923.*Wik





1905 Arne Carl-August Beurling (February 3, 1905 – November 20, 1986) was a Swedish mathematician and professor of mathematics at Uppsala University (1937–1954) and later at the Institute for Advanced Study in Princeton, New Jersey.
Beurling worked extensively in harmonic analysis, complex analysis and potential theory. The "Beurling factorization" helped mathematical scientists to understand the Wold decomposition, and inspired further work on the invariant subspaces of linear operators and operator algebras.
In the summer of 1940 he single-handedly deciphered and reverse-engineered an early version of the Siemens and Halske T52 also known as the Geheimfernschreiber (secret teletypewriter) used by Nazi Germany in World War II for sending ciphered messages. The T52 was one of the so-called "Fish cyphers", that using, transposition, created nearly one quintillion (893 622 318 929 520 960) different variations. It took Beurling two weeks to solve the problem using pen and paper. Using Beurling's work, a device was created that enabled Sweden to decipher German teleprinter traffic passing through Sweden from Norway on a cable. In this way, Swedish authorities knew about Operation Barbarossa before it occurred. Not wanting to reveal how this knowledge was attained the Swedish warning was not treated as credible by Soviets. *Wik



1951 Steven George Krantz (3 February 1951 San Francisco, California - ) is an American scholar, mathematician, and writer at Washington University in St. Louis. He has also taught at UCLA, Princeton, and Penn State. He is Editor-in-Chief of the Notices of the American Mathematical Society for the period (2010–2015). Krantz is also Editor-in-Chief of the Journal of Mathematical Analysis and Applications and Managing Editor and founder of the Journal of Geometric Analysis. He also edits for The American Mathematical Monthly, Complex Variables and Elliptic Equations, and The Bulletin of the American Mathematical Society.
Professor Krantz is author of many textbooks and popular books. His books Mathematical Apocrypha and Mathematical Apocrypha Redux are collections of anecdotes about famous mathematicians. Krantz's book An Episodic History of Mathematics: Mathematical Culture through Problem Solving is a blend of history and problem solving. A Mathematician's Survival Guide and The Survival of a Mathematician are about how to get into the mathematics profession and how to survive in the mathematics profession. Krantz's new book with Harold R. Parks entitled Mathematics: From Fascination to Insight is an entree to mathematics for the layman. *Wik
*MAA





DEATHS




1468
  Johannes Gensfleisch zur Laden zum Gutenberg (/ˈɡuːtənbɜːrɡ/; c. 1393–1406 – 3 February 1468) was a German inventor and craftsman who introduced letterpress printing to Europe with his movable-type printing press. Though not the first of its kind, earlier designs were restricted to East Asia, and Gutenberg's version was the first to spread across the world. His work led to an information revolution and the unprecedented mass-spread of literature throughout Europe. It also had a direct impact on the development of the Renaissance, Reformation and humanist movement.

His many contributions to printing include the invention of a process for mass-producing movable type; the use of oil-based ink for printing books; adjustable molds; mechanical movable type; and the use of a wooden printing press similar to the agricultural screw presses of the period.


1737 Tommaso Ceva (20 Dec 1648; 3 Feb 1737) Italian mathematician, poet, and brother of the mathematician Giovanni Ceva. At the age of fifteen he entered the Society of Jesus. His education was entirely within the Jesuit Order and he obtained a degree in theology. His first scientific work, De natura gravium (1669), dealt with physical subjects, such as gravity and free fall, in a philosophical way. Tommaso Ceva's mathematical work is summed up in Opuscula Mathematica (1699) which examines geometry (geometric-harmonic means, the cycloid, and conic sections), gravity and arithmetic. He also designed an instrument to divide a right angle into a given number of equal parts. He gave the greater part of his time to writing Latin prose. His poem Jesus Puer was translated into many languages. *TIS
Prompted by the familiar "insertion" method of Archimedes, Ceva devised in 1699 a curve for trisection which was called the "Cycloidum anomalarum". The principle involved is that of doubling angles. The cycloid of Ceva has the polar equation

r = 1 + 2 (Cos(2t))  *Wik





1862 Jean-Baptiste Biot (21 Apr 1774, 3 Feb 1862) French mathematician and physicist who co-developed the Biot-Savart law, that the intensity of the magnetic field produced by current flow through a wire varies inversely with the distance from the wire. He did work in astronomy, elasticity, heat, optics, electricity and magnetism. In pure mathematics, he contributed to geometry. In 1804 he made a 13,000-feet (5-km) high hot-air balloon ascent with Joseph Gay-Lussac to investigate the atmosphere. In 1806, he accompanied Arago to Spain to complete earlier work there to measure of the arc of the meridian. Biot discovered optical activity in 1815, the ability of a substance to rotate the plane of polarization of light, which laid the basis for saccharimetry, a useful technique of analyzing sugar solutions.*TIS





1919 Edward Charles Pickering, (19 Jul 1846, 3 Feb 1919) U.S. physicist and astronomer. After graduating from Harvard, he taught physics for ten years at MIT where he built the first instructional physics laboratory in the United States. At age 30, he directed the Harvard College Observatory for 42 years. His observations were assisted by a staff of women, including Annie Jump Cannon. He introduced the use of the meridian photometer to measure the magnitude of stars, and established the Harvard Photometry (1884), the first great photometric catalog. By establishing a station in Peru (1891) to make the southern photographs, he published the first all-sky photographic map (1903).*TIS

*Wik



1923 Adam Wilhelm Siegmund Günther (6 Feb 1848 in Nuremberg, Germany - 3 Feb 1923 in Munich, Germany) Günther's contributions to mathematics include a treatise on the theory of determinants (1875), hyperbolic functions (1881), and the parabolic logarithm and parabolic trigonometry (1882). He also wrote numerous books and journal articles [which] encompass both pure mathematics and its history and physics physics, geophysics, meteorology, geography, and astronomy. The individual works on the history of science, worth reading even today, bear witness to a thorough study, a remarkable knowledge of the relevant secondary literature, and a superior descriptive ability. *SAU



1925 Oliver Heaviside (18 May 1850, 3 Feb 1925) English physicist who predicted the existence of the ionosphere. In 1870, he became a telegrapher, but increasing deafness forced him to retire in 1874. He then devoted himself to investigations of electricity. In 1902, Heaviside and Kennelly predicted that there should be an ionised layer in the upper atmosphere that would reflect radio waves. They pointed out that it would be useful for long distance communication, allowing radio signals to travel to distant parts of the earth by bouncing off the underside of this layer. The existence of the layer, now known as the Heaviside layer or the ionosphere, was demonstrated in the 1920s, when radio pulses were transmitted vertically upward and the returning pulses from the reflecting layer were received. *TIS He adapted complex numbers to the study of electrical circuits, invented mathematical techniques to the solution of differential equations (later found to be equivalent to Laplace transforms), reformulated Maxwell's field equations in terms of electric and magnetic forces and energy flux, and independently co-formulated vector analysis. Although at odds with the scientific establishment for most of his life, Heaviside changed the face of mathematics and science for years to come. Among many others, he coined the terms for admittance , conductance , impedance , permeability , and inductance. *Wik

Steve Palzewicz sent: Heaviside's response to mathematicians' objections to the lack of formal understanding and justification of his operator approach: "Shall I refuse my dinner because I do not fully understand the process of digestion?" 😎 A true badazz dude!🤣 





1878 Agner Krarup Erlang (January 1, 1878 – February 3, 1929) was a Danish mathematician, statistician and engineer, who invented the fields of traffic engineering and queueing theory.
Erlang's 1909 paper, and subsequent papers over the decades, are regarded as containing some of most important concepts and techniques for queueing theory.[4]

By the time of his relatively early death at the age of 51, Erlang had created the field of telephone networks analysis. His early work in scrutinizing the use of local, exchange and trunk telephone line usage in a small community to understand the theoretical requirements of an efficient network led to the creation of the Erlang formula, which became a foundational element of modern telecommunications network studies.*Wik\





1943 Earle Raymond Hedrick (September 27, 1876 – February 3, 1943), was an American mathematician and a vice-president of the University of California.
Hedrick was born in Union City, Indiana. After undergraduate work at the University of Michigan, he obtained a Master of Arts from Harvard University. With a Parker fellowship, he went to Europe and obtained his PhD from Göttingen University in Germany under the supervision of David Hilbert in 1901. He then spent several months at the École Normale Supérieure in France, where he became acquainted with Édouard Goursat, Jacques Hadamard, Jules Tannery, Émile Picard and Paul Émile Appell, before becoming an instructor at Yale University. In 1903, he became professor at the University of Missouri.
He was involved in the creation of the Mathematical Association of America in 1916 and was its first president.
His work was on partial differential equations and on the theory of nonanalytic functions of complex variables. He also did work in applied mathematics, in particular on a generalization of Hooke's law and on transmission of heat in steam boilers. With Oliver Dimon Kellogg he authored a text on the applications of calculus to mechanics.
He moved in 1920 to UCLA to become head of the department of mathematics. In 1933, he was giving the first graduate lecture on mathematics at UCLA. He became provost and vice-president of the University of California in 1937. He humorously called his appointment The Accident, and told jokingly after this event, "I no longer have any intellectual interests —I just sit and talk to people." He played in fact a very important role in making of the University of California a leading institution. He retired from the UCLA faculty in 1942 and accepted a visiting professorship at Brown University. Soon after the beginning of this new appointment, he suffered a lung infection. He died at the Rhode Island hospital in Providence, Rhode Island. Two UCLA residence halls are named after him: Hedrick Hall in 1963, and Hedrick Summit in 2005.
Earle Raymond Hedrick worked on partial differential equations and on the theory of nonanalytic functions of complex variables. He also did work in applied mathematics, in particular on a generalization of Hooke's law and on transmission of heat in steam boilers. With Oliver Dimon Kellogg he authored a text on the applications of calculus to mechanics. *Wik





1956 (Félix-Édouard-Justin-) Émile Borel (7 Jan 1871; 3 Feb 1956) was a French mathematician who (with René Baire and Henri Lebesgue), was among the pioneers of measure theory and its application to probability theory. In one of his books on probability, he proposed the thought experiment that a monkey hitting keys at random on a typewriter keyboard will - with absolute certainty - eventually type every book in France's Bibliothèque nationale de France (National Library). This is now popularly known as the infinite monkey theorem. He was first to develop (1899) a systematic theory for a divergent series. He also published (1921-27) a number of research papers on game theory and became the first to define games of strategy. *TIS . “In Paris as a scholarship student preparing for the university, he entered the family circle of G. Darboux through friendship with his son, saw the “good life” of a leading mathematician, and set his heart on it.” *VFR [It began with Jonathon Swift and Gulliver's Travels, 1872, according to Professor Barrow. In the tale "a mythical professor of the Grand Academy of Lagado who aims to generate a catalogue of all scientific knowledge by having his students continuously generate random strings of letters..." (I think, see emphasis in the excerpt below, that it was random strings of words).. Anyway, according to the good Professor Barrow, the story was embellished in different forms until French Mathematician Emile Borel{there is a street and a square named for him in the 17th District in Paris} suggested that random typing monkeys could duplicate the French national library.] *Pballew, Typing Monkeys




1969  Xiong Qinglai, or Hiong King-Lai ( October 20, 1893 – February 3, 1969), courtesy name Dizhi (迪之), was a Chinese mathematician from Yunnan. He was the first person to introduce modern mathematics into China, and served as an influential president of Yunnan University from 1937 through 1947. A Chinese stamp was issued in his honour.
Xiong was labeled a "reactionary academic authority" during the period of Cultural Revolution and was persecuted to death in 1969, at the age of 76. He was rehabilitated in 1978. *Wik







Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell