Saturday, 23 November 2024

On This Day in Math - November 23

  


Whereas Nature does not admit of more than three dimensions ...
it may justly seem very improper to talk of a solid ...
drawn into a fourth, fifth, sixth, or further dimension.

~John Wallis


The 327th day of the year; 327 is the largest number n so that n, 2n, and 3n together contain every digit from 1-9 exactly once. (Students might search for a smaller number with that quantity) *What's Special About This Number

and from Jim Wilder @wilderlab:
For day 327: 327 is a perfect totient number- φ(327)=216, φ(216)=72, φ(72)=24, φ(24)=8, φ(8)=4, φ(4)=2, φ(2)=1, and 216+72+24+8+4+2+1=327.
 
327 cannot be written as the sum of three squares.   Gauss found that this is only true for numbers of the form 4^k (8n-1), such as 7, 15, 23, .... but also 28, 60, 92, ...  and 112, 240, etc.



EVENTS

1654 From 10:30 to 12:30 in the evening Pascal experienced a religious ecstasy that called him to give up his intermittent interest in mathematics and to devote his time to religious contemplation. *VFR
Shortly after his death in 1662 a servant was sorting through Pascal’s clothes and noticed something sewn into a coat that Pascal had often worn.  Out of curiosity the servant cut open the cloth and found a parchment, inside of which was a faded piece of paper.  The parchment and the paper both contained, in Pascal’s handwriting, nearly the same words. The papers, containing a confusing list of religious phrases drawn from seemingly non-related Bible verses, are often called Pascals amulet or memorial.  
The common historical narrative is that Pascal never discussed his nigh of religious re-dedication, which led to his giving up all work in mathematics until a brief period in 1658-1659 when he wrote out his discoveries about the cycloid formed by the path a point on the edge of a rolling circle.  In particular he gave a method for determining the area under a circular arc.
Another famous incident in Pascals life was a near fatal accident that happened at the Neuilly-sur-Seine bridge where the horses plunged over the parapet and the carriage nearly followed them. Fortunately, the reins broke and the coach hung halfway over the edge.  Many historians doubt this incident ever happened, but others have linked it to the same date as his religious ectasy and suggest he took the accident as a warning from God that led to his "Night of Fire."  One historian wrote"On this day, November 23, 1654, Pascal's horses bolted and plunged off a bridge. Pascal was thrown into the roadway. He saw this as a warning directly from God. That night he experienced a Christian conversion that would cause his outstanding scientific work to take second place in his pursuits. Light flooded his room. He recognized Jesus, the Word. For the rest of his life Pascal carried around a piece of parchment sewn into his coat--a parchment inscribed with ecstatic phrases…"
"Incidentally, speaking of revelations, about ten years after Pascal’s death, Leibniz was reading Pascal’s 1659 paper on the area under a circular arc, and “a light suddenly burst upon him”.  At this moment, looking at Pascal’s diagram, Leibniz realized that the tangent (derivative) was determined by dividing by the difference between the ordinates, and the quadrature (integral) was determined by multiplying by that same difference, and that, therefore, these two operations were the reciprocals of each other, i.e., the fundamental theorem of calculus. 
It was right there in the diagram, but apparently Pascal didn’t see it.  Leibniz wrote to James Bernoulli that “sometimes Pascal seemed to have had a bandage over his eyes”. *Mathpages.com



1670 James Gregory writes to John Collins, with the first use of what will come to be called the Newton-Gregory interpolation formula. He includes in the letter two enclosures showing how to apply his method to series for sines and logarithms. *Thomas Harriot’s Doctrine of Triangular Numbers, Beery & Stedall, pg 51-52





1706 Jakob Hermann writes to Leibniz about proof that Machin's series converges to pi. *My uncredited notes (sorry)



1821 Thomas Jefferson writes to West Point Instructor Claudius Crozet to thank him for the gift of a copy of his A Treatise on Descriptive Geometry and praised the book, and the author. Jefferson pronounced Crozet, "by far the best mathematician in the United States." *Natl. Archives, Wik (Crozet is sometimes credited with introducing the blackboard into the US, but it seems to have been common at West Point before his arrival there.)
Crozet was one of the founders of Virginia Military Institute (VMI) at Lexington, Virginia, a major training institution for engineers and militia officers for Virginia and the South. When VMI opened in 1839, Crozet was the architect of the college's academic program and military organization. At its first meeting, the members of the VMI Board of Visitors elected Crozet president of the Board, a position he held for six years (while remaining the state's Chief Engineer).
Crozet died in January 1864 at the residence of his daughter and son-in-law, as the Confederacy was losing the Civil War, but more than a year before its defeat. He was initially buried near his wife and children in Shockoe Hill Cemetery, but in 1942 his remains were reinterred in the Virginia Military Institute cemetery.
Crozet's grave on the campus of the Virginia Military Institute, in Lexington, Virginia




1823 Janos Bolyai wrote to his father “I have made such wonderful discoveries that I am myself lost in astonishment.” This refers to his discovery of Non-Euclidean Geometry that was published in 1833. *Kline, Mathematics. The Loss of Certainty, p. 83 via *VFR
Carl Friedrich Gauss, on reading the Appendix, wrote to a friend saying "I regard this young geometer Bolyai as a genius of the first order." To Farkas Bolyai, however, Gauss wrote: "To praise it would amount to praising myself. For the entire content of the work...coincides almost exactly with my own meditations which have occupied my mind for the past thirty or thirty-five years." In 1848 Bolyai learned that Nikolai Ivanovich Lobachevsky had published a similar piece of work in 1829. Though Lobachevsky published his work a few years earlier than Bolyai, it contained only hyperbolic geometry. Working independently, Bolyai and Lobachevsky pioneered the investigation of non-Euclidean geometry.
In addition to his work in geometry, Bolyai developed a rigorous geometric concept of complex numbers as ordered pairs of real numbers. Although he never published more than the 24 pages of the Appendix, he left more than 20,000 pages of mathematical manuscripts when he died.



1834 Astronomer Royal Airy Replies to suggestion that he begin a mathematical search for undiscovered planet that would be Neptune by the Reverend T.J. Hussey.
Hussey had mentioned in his letter how he has heard of a possible planet beyond Uranus and looked for it using a reflector telescope, but to no avail. He presented the idea of using mathematics as a tool in the search but admitted to Airy that he would not be of much help in that regard. On November 23rd Airy writes back to the reverend and admits he too has been preoccupied with a possible planet. He had observed that Uranus' orbit deviated the most in 1750 and 1834, when it would be at the same point. This was strong evidence for an object pulling on the planet, but Airy felt that until more observations were made no mathematical tools would be of help
*from http://theoriginal1701.hubpages.com/hub/The-Drama-of-Neptunes-Discovery





In 1889, the first jukebox was installed when an entrepreneur named Louis Glass and his business associate, William S. Arnold, placed a coin-operated Edison cylinder phonograph in the Palais Royale Saloon in San Francisco. The machine, an Edison Class M Electric Phonograph with oak cabinet, had been fitted locally in San Francisco with a coin mechanism invented and soon patented by Glass and Arnold. This was before the time of vacuum tubes, so there was no amplification. For a nickel a play, a patron could listen using one of four listening tubes. Known as "Nickel-in-the-Slot," the machine was an instant success, earning over $1000 in less than half a year. *TIS
"Rockin' like it's 1889"



1924 New York Times publishes Hubble's new universe: Between 1922–1923, Hubble's observations had proved conclusively that these nebulae were much too distant to be part of the Milky Way and were, in fact, entire galaxies outside our own. This idea had been opposed by many in the astronomy establishment of the time, in particular by the Harvard University-based Harlow Shapley. (Shapley wrote sarcastically that Hubble's letter informing him of his results was “the most entertaining piece of literature I have seen for a long time.” ) Despite the opposition, Hubble, then a thirty-five year old scientist, had his findings first published in The New York Times on November 23, 1924, and then more formally presented in the form of a paper at the January 1, 1925 meeting of the American Astronomical Society. Hubble's findings fundamentally changed the scientific view of the universe.*Wik




1982 Vatican City issued a set of three stamps commemorating the 400th anniversary of the Gregorian Calendar. The image on the Vatican stamp is from the tomb of Pope Gregory XIII in St. Peter's Basilica. The tomb, the work of Camillo Rusconi, includes a relief showing Clavius kneeling before the Pope, presenting his work as the Pope promulgates the new calendar in 1582. *VFR

1982 Poland issued stamps honoring the mathematicians StanisLlaw Zaremba (1863–1942), WacLlaw Sierpi´nski (1882–1969), Zygmunt Janiszewski (1888–1920), and Stefan Banach (1892-1945). [Scott #2542-5]. *VFR




1992 "Computer industry on the skids" With IBM projected to lose $5 billion in 1992, Business Week describes the computer business as "an industry on the skids." The magazine cited layoffs at most established computer companies, such as IBM, as well as newer firms like Sun Microsystems Inc., as evidence that the industry was saturated. A solution, the article concluded, would be for each business to find its proper niche.*CHM





BIRTHS

1221 Alfonso X of Castile (23 Nov 1221; 4 Apr 1284) Spanish monarch and astronomer who encouraged the preparation of revised planetary tables (1252), published on the day of his accession to the throne as king of Castile and León. These "Alfonsine Tables," a revision and improvement of the Ptolemaic tables, were the best available during the Middle Ages; they were not replaced by better ones for over three centuries. The astronomical data tabulating the positions and movements of the planets was compiled by about 50 astronomers he had assembled for this purpose. He questioned the complexity of the Ptolemaic model centuries before Copernicus. "If the Lord Almighty had consulted me before embarking on the Creation, I would have recommended something simpler." He also wrote a commentary on alchemy. *TIS




1616 John Wallis (23 Nov 1616, 28 Oct 1703) British mathematician who introduced the infinity math symbol . Wallis was skilled in cryptography and decoded Royalist messages for the Parliamentarians during the Civil War. Subsequently, he was appointed to the Savilian Chair of geometry at Oxford in 1649, a position he held until his death more than 50 years later. Wallis was part of a group interested in natural and experimental science which became the Royal Society, so Wallis is a founder member of the Royal Society and one of its first Fellows. Wallis contributed substantially to the origins of calculus and was the most influential English mathematician before Newton. *TIS



1820 Isaac Todhunter (23 Nov 1820 in Rye, Sussex, England - 1 March 1884 in Cambridge, England) Todhunter is best known for his textbooks and his writing on the history of mathematics. Among his textbooks are Analytic Statics (1853), Plane Coordinate Geometry (1855), Examples of Analytic geometry in Three Dimensions (1858). He also wrote some more elementary texts, for example Algebra (1858), Trigonometry (1859), Theory of Equations (1861), Euclid (1862), Mechanics (1867) and Mensuration (1869).
Among his books on the history of mathematics are A History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace (1865, reprinted 1965) and History of the Mathematical Theories of Attraction (1873). *SAU



1837 Johannes Diederik van der Waals (23 Nov 1837; 9 Mar 1923) Dutch physicist, winner of the 1910 Nobel Prize for Physics for his research on the gaseous and liquid states of matter. He was largely self-taught in science and he originally worked as a school teacher. His main work was to develop an equation (the van der Waals equation) that - unlike the laws of Boyle and Charles - applied to real gases. Since the molecules do have attractive forces and volume (however small), van der Waals introduced into the theory two further constants to take these properties into account. The weak electrostatic attractive forces between molecules and between atoms are called van der Waals forces in his honour. His valuable results enabled James Dewar and Heike Kamerlingh-Onnes to work out methods of liquefying the permanent gases. *TIS



1853 George Bruce Halsted (23 Nov 1853 in Newark, New Jersey, USA - 16 March 1922 in New York, USA) His main interests were the foundations of geometry and he introduced non-euclidean geometry into the United States, both through his own research and writings as well as by his many important translations. Halsted gave commentaries on the work of Lobachevsky, Bolyai, Saccheri and Poincaré and made translations of their works into English. His work on the foundations of geometry led him to publish Demonstration of Descartes's theorem and Euler's theorem in the Annals of Mathematics in 1885. His other main interest was in mathematical education and, as a mathematics educator, he criticised the careless way that mathematics was presented in the textbooks of the time. He contributed over ninety article to the American Mathematical Monthly and wrote many biographies of mathematicians such as Lambert, Farkas Bolyai, Lobachevsky, De Morgan, Sylvester, Chebyshev, Cayley, Hoüel and Klein. *SAU
Halsted introduced conics after the manner of a Steiner conic, here shown from a projectivity composed of two perspectivities 




1887 Henry Gwyn Jeffreys Moseley (23 Nov 1887; 10 Aug 1915) English physicist who experimentally demonstrated that the major properties of an element are determined by the atomic number, not by the atomic weight, and firmly established the relationship between atomic number and the charge of the atomic nucleus. He began his research under Ernest Rutherford while serving as lecturer at the Univ. of Manchester. Using X-ray photographic techniques, he determined a mathematical relation between the radiation wavelength and the atomic numbers of the emitting elements. Moseley obtained several quantitative relationships from which he predicted the existence of three missing elements (numbers 43, 61, and 75) in the periodic table, all of which were subsequently identified. Moseley was killed in action during WW I.*TIS
Moseley in the Balliol-Trinity Laboratories in 1910



1917 Elizabeth Scott (November 23, 1917 – December 20, 1988) was an American mathematician specializing in statistics.
Scott was born in Fort Sill, Oklahoma. Her family moved to Berkeley, California when she was 4 years old. She attended the University of California, Berkeley where she studied mathematics and astronomy. There were few options for further study in astronomy, as the field was largely closed to women at the time, so she completed her graduate studies in mathematics. "It was a profession not quite ready to welcome women." She received her Ph.D. in 1949, and received a permanent position in the Department of Mathematics at Berkeley in 1951.
She wrote over 30 papers on astronomy and 30 on weather modification research analysis, incorporating and expanding the use of statistical analyses in these fields. She also used statistics to promote equal opportunities and equal pay for female academics.
In 1957 Elizabeth Scott noted a bias in the observation of galaxy clusters. She noticed that for an observer to find a very distant cluster, it must contain brighter than normal galaxies and must also contain a large number of galaxies. She proposed a correction formula to adjust for (what came to be known as) the "Scott effect".
The Committee of Presidents of Statistical Societies awards a prize in her honour to female statisticians.*Wik



1936 Argelia Velez-Rodriguez (Nov 23, 1936 - ) is a Cuban-American mathematician and educator. She was the first Black woman to earn a doctorate in mathematics in Cuba.

When Argelia Velez-Rodriguez was growing up, her father worked in the government under Cuba's leader, Fulgencio Batista. At the start of Batista's governing, he improved the Cuban educational system. Her family was Catholic, so she was educated in Catholic primary and secondary schools. During her schooling, teachers noticed her interest in mathematics, and she won a mathematic competition at age 9

In 1962, she decided to emigrate to the United States with her son and her daughter, followed by her husband three years later. Texas College is where she held first United States teaching position in 1962, and she taught math and physics. By 1972, she was a professor at Bishop College in Texas, and she was a department chair for mathematics from 1975–1978. She left Bishop in 1979 and was hired by the National Science Foundation to work with the Minority Science Improvement Program. In 1980 she was hired by the U.S. Department of Education to direct the Minority Science Improvement Program. *Wik






DEATHS

1604 Francesco Barozzi (in Latin, Franciscus Barocius) (9 August 1537 – 23 November 1604) was an Italian mathematician, astronomer and humanist. Barozzi helped in the general reappraisal of the geometry of Euclid, and corresponded with numerous mathematicians, including the German Jesuit Christopher Clavius. His original works include Cosmographia in quatuor libros distributa summo ordine, miraque facilitate, ac brevitate ad magnam Ptolemaei mathematicam constructionem, ad universamque
astrologiam institutens (1585), which he dedicated to the Duke of Urbino. This work concerns the cosmography and mathematic systems of Ptolemy. Barozzi also discussed 13 ways of drawing a parallel line in his Admirandum illud geometricum problema tredecim modis demonstratum quod docet duas lineas in eodem plano designare, quae nunquam invicem coincidant, etiam si in infinitum protrahantur: et quanto longius producuntur, tanto sibiinuicem propiores euadant (1586).
In his Opusculum: in quo una Oratio et due Questiones, altera de Certitude et altera de Medietate Mathematicarum continentur, Barozzi stressed that "the certitude of mathematics is contained in the syntactic rigor of demonstrations." Barozzi dedicated this work to Daniele Barbaro.
He also wrote Rythmomachia (1572), which he dedicated to Camille Paleotti, a Senator of Bologna, a work that is based on the mathematical game of the same name, also known as "The Philosophers' Game."
As an antiquarian, he copied many Greek inscriptions on Crete. His collection of inscriptions was later inherited by his nephew Iacopo Barozzi (1562–1617), who edited and expanded it. This collection was later acquired in 1629 by the University of Oxford. They are wide-ranging in date and subject-matter and can still be found in the Bodleian Library.*Wik

1817 James Glenie (Oct 1750 in Leslie, Fife, Scotland - 23 Nov 1817 in Chelsea, London, England ) He was an artillery officer when his regiment was sent out to North America in 1775 at the start of the American War of Independence. During his time in North America with the army Glenie worked on mathematics. In fact, even before being sent to North America, he had discovered what he called the antecedental calculus in 1774. The was an attempt to base Newton's fluxional calculus on the binomial theorem rather than on the concept of motion. He published a number of papers on this and other topics; The division of right lines, surfaces and solids being published in the Philosophical Transactions of the Royal Society in 1776 while The general mathematical laws which regulate and extend proportion universally was published in the same journal in the following year. In 1778 the Royal Society published Glenie's paper on the antecedental calculus. In addition to these papers he had also published a book on gunnery entitled The History of Gunnery with a New Method of Deriving the Theory of Projectiles in 1776. For his achievements in mathematics and its applications he was elected a fellow of the Royal Society on 18 March 1779 while he was still based with the army in Quebec.
He died in poverty. *SAU



1826 Johann Elert Bode (19 Jan 1747, 23 Nov 1826) German astronomer best known for his popularization of Bode's law. In 1766, his compatriot Johann Titius had discovered a curious mathematical relationship in the distances of the planets from the sun. If 4 is added to each number in the series 0, 3, 6, 12, 24,... and the answers divided by 10, the resulting sequence gives the distances of the planets in astronomical units (earth = 1). Also known as the Titius-Bode law, the idea fell into disrepute after the discovery of Neptune, which does not conform with the 'law' - nor does Pluto. Bode was director at the Berlin Observatory, where he published Uranographia (1801), one of the first successful attempts at mapping all stars visible to the naked eye without any artistic interpretation of the stellar constellation figures. *TIS



1844 Thomas Henderson (28 Dec 1798, 23 Nov 1844) Scottish astronomer, the first Scottish Astronomer Royal (1834), who was first to measure the parallax of a star (Alpha Centauri, observed at the Cape of Good Hope) in 1831-33, but delayed publication of his results until Jan 1839. By then, a few months earlier, both Friedrich Bessel and Friedrich Struve had been recognized as first for their measurements of stellar parallaxes. Alpha Centauri can be observed from the Cape, though not from Britain. It is now known to be the nearest star to the Sun, but is still so distant that its light takes 4.5 years to reach us. As Scottish Astronomer Royal in 1834, he worked diligently at the Edinburgh observatory for ten years, making over 60,000 observations of star positions before his death in 1844.*TIS




1864 Friedrich Georg Wilhelm von Struve (15 Apr 1793, 23 Nov 1864) German-Russian astronomer, one of the greatest 19th-century astronomers and the first in a line of four generations of distinguished astronomers. He founded the modern study of binary (double) stars. In 1817, he became director of the Dorpat Observatory, which he equipped with a 9.5-inch (24-cm) refractor that he used in a massive survey of binary stars from the north celestial pole to 15°S. He measured 3112 binaries - discovering well over 2000 - and cataloged his results in Stellarum Duplicium Mensurae Micrometricae (1837). In 1835, Czar Nicholas I persuaded Struve to set up a new observatory at Pulkovo, near St. Petersburg. There in 1840 Struve became, with Friedrich Bessel and Thomas Henderson, one of the first astronomers to detect parallax. *TIS



1910 Octave Chanute(18 Feb 1832, 23 Nov 1910) U.S. aeronaut whose work and interests profoundly influenced Orville and Wilbur Wright and the invention of the airplane. Octave Chanute was a successful engineer who took up the invention of the airplane as a hobby following his early retirement. Knowing how railroad bridges were strengthened, Chanute experimented with box kites using the same basic strengthening metod, which he then incorporated into wing design of gliders. Through thousands of letters, he drew geographically isolated pioneers into an informal international community. He organized sessions of aeronautical papers for the professional engineering societies that he led; attracted fresh talent and new ideas into the field through his lectures; and produced important publications. *TIS The town of Chanute, Kansas is named after him, as well as the former Chanute Air Force Base near Rantoul, Illinois, which was decommissioned in 1993. The former Base, now turned to peacetime endeavors, includes the Octave Chanute Aerospace Museum, detailing the history of aviation and of Chanute Air Force base. He was buried in Springdale Cemetery, Peoria, Illinois. *Wik
Chanute's 1896 biplane hang glider is a trailblazing design adapted by the Wright brothers, who "contrived a system consisting of two large surfaces on the Chanute double-deck plan.



1942 Stanisław Saks (December 30, 1897 – November 23, 1942) was a Polish mathematician and university tutor, known primarily for his membership in the Scottish Café circle, an extensive monograph on the Theory of Integrals, his works on measure theory and the Vitali-Hahn-Saks theorem.*Wik

1942 Stanisław Zaremba (October 3, 1863 – November 23, 1942) was a Polish mathematician. His research in differential equations, applied mathematics, classical analysis, particularly on harmonic analysis, was widely recognized. He was a mathematician who contributed to the success of the Polish School of Mathematics through his teaching and organizational skills as well as through his research. Zaremba wrote a number of university textbooks and monographies.*Wik




Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

 

Friday, 22 November 2024

On This Day in Math - November 22

  


Ulam Spiral
PrimeSpiral_1000.gif
mathworld.wolfram.com


I believe there are
15,747,724,136,275,002,577,605,653,961,181,555,468,044,717,
914,527,116,709,366,231,025,076,185,631,031,296
protons in the universe,
and the same number of electrons.
— Sir Arthur Stanley Eddington

The 326th day of the year; 326 is the maximum number of pieces that may be produced in a pizza with 25 straight cuts. These are sometimes called "lazy caterer numbers" and more generally they are centered polygonal numbers.

326 is also the sum of the first 14 consecutive odd primes: 326 = 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47. *MAA

326 prefixed or followed by any digit still remains composite.  *Derek's Daily Math


EVENTS



1670  Rene Francois de Sluse had discovered a method of tangents for polynomials f(x)=0 that was well-known throughout the continent by 1650.  On 22 Nov, 1670 (NS) he wrote to Oldenburg about a method by Isaac Barrow published in 1669, that Sluse had just read, commenting that is method was similar to his own earlier method.  He wrote that, "...monachos, tangents, maxima, and minima are the same thing." Sluse's method was essentially identical to the method of Jan Hudde also well known throughout the continent  by mid-century.  *Correspondence of John Wallis, volume IV.  
"When they state that Collins had been four years in circulating the letter in which the method of fluxions was sufficiently described to any intelligent person, they suppress two facts: first, that the letter itself was in consequence of Newton's learning that Sluse had a method of tangents; secondly, that it revealed no more than Sluse had done. ...this method of Sluse is never allowed to appear ...Sluse wrote an account of the method which he had previously signified to Collins, for the Royal Society, for whom it was printed. The rule is precisely that of Newton... To have given this would have shown the world that the grand communication which was asserted to have been sent to Leibniz in June 1676 might have been seen in print, and learned from Sluse, at any time in the previous years: accordingly it was buried under reference. ...Leibniz had seen Hudde at Amsterdam, and had found that Hudde was in possession of even more than Sluse." *Augustus De Morgan

*Wik



1850 J J Sylvester called to the Bar. Rather than practicing law he gave private instruction in mathematics, and counted among his pupils Florence Nightingale. [Osiris, 1(1936), 102] *VFR (This idea of Sylvester tutoring Nightingale, to the best of my knowledge, originates from the Herbert Baker obituary. Karen Hunger Parshall, among others, has questioned the accuracy of this statement.)



1906 An International Radiotelegraphic Convention adopted the S.O.S radio distress signal, ... The Convention met in Berlin in 1906. This body signed an international agreement on November 3, 1906, with an effective date of July 1, 1908. An extensive collection of Service Regulations was included to supplement the Convention, and in particular Article XVI adopted Germany's Notzeichen distress signal as the international standard, stating: "Ships in distress shall use the following signal: · · · — — — · · · repeated at brief intervals".
The first well documented use of the SOS distress call is by the Arapahoe on August 11, 1909, when it suffered a broken shaft in the Atlantic Ocean, near Cape Hatteras, North Carolina. However, an article titled "Notable Achievements of Wireless" in the September, 1910 Modern Electrics suggests that an earlier SOS distress call was transmitted by the Cunard liner Slavonia, on June 10, 1909.
[The wireless operator aboard S.S. Arapahoe, T. D. Haubner, radioed for help. A few months later, Haubner on the S.S. Arapahoe received an SOS from the SS Iroquois, the second use of SOS in America.(*TIS)]
The first radio distress call to be adopted appears to have been "CQD", by the Marconi International Marine Communication Company​, for Marconi-operated shipboard stations. It was announced on January 7, 1904 by the company's "Circular 57" that "...on and after the 1st February, 1904, the call to be given by ships in distress or in any way requiring assistance shall be 'C.Q.D.'." ("CQ" was a general call to all stations; amateur or "ham" radio operators still use it today when soliciting a contact with any station that hears the call.) *Citizens Compendium




Microsoft’s Xbox 360, the second in the Xbox line, is released in the US and Canada after a viral marketing campaign and intense hype. Initially, eighteen titles were available at launch, and of those, Call of Duty 2 was the best seller for the new console. An updated version of Xbox Live, which allowed online multi-player gaming and media streaming, was a major selling point for the 360, one of the top-selling consoles of all time. The 360’s main competitors were Nintendo’s Wii and Sony’s PlayStation 3, all of which were 7th generation video game consoles. Its successor, the Xbox One, was released 8 years later.


2022, Jan Łukasiewicz's remains were reburied in Warsaw's Old Powązki Cemetery. He had died and been buried in Dublin in 1956. Łukasiewicz is best known as the inventor of "Polish notation",  which allowed expressions to be written unambiguously without the use of brackets. It  is a mathematical notation in which operators precede their operands, such as +3 4 for 3+4.  In postfix notation 3  4  + .  
Polish notation, usually in postfix form, is the chosen notation of certain calculators, notably from Hewlett-Packard. 2(3+4)  could be written as  3   4  +  2  x without brackets.


Warsaw's Old Powązki Cemetery




BIRTHS

1796 Charles Bonnycastle (22 Nov 1796 - 31 Oct, 1840). The University of Virginia's second Professor of Mathematics, Charles Bonnycastle, was born in Woolwich, England. His father, John, was Professor of Mathematics at the Royal Military Academy there, and so Charles grew up and received his education in an environment that very much influenced his own subsequent career. The contributions that the son made to the thirteenth edition of his father's textbook, Introduction to Algebra (1824), in fact, augmented the credentials he presented to Francis Walker Gilmer, agent for the newly forming University of Virginia.
Bonnycastle actually came to the University at its opening in 1825 as the first professor, not of mathematics, but of natural philosophy (as physics was then called). When Thomas Key, the first Professor of Mathematics, resigned to return to his native England, Bonnycastle shifted over to the mathematical chair and remained in that post until his untimely death on 31 October 1840 at the age of only forty-three. "Old Bonny," as he was fondly called by the students, moved away from what was increasingly becoming the antiquated synthetic approach to mathematical pedagogy that had been so typical of Oxbridge mathematical teaching in the eighteenth and early nineteenth centuries and introduced the more avant-garde analytic approach of late eighteenth-century French authors such as Silvestre Lacroix. In 1834, he published his own textbook, Inductive Geometry, in which he aimed to unite the best of the synthetic and the analytic approaches to geometry for the college- and university-level audience. Bonnycastle also contributed works on mathematical and physical topics to the Transactions of the American Philosophical Society, one of the few venues available in early nineteenth-century America for the publication of original work in the sciences.
Bonnycastle apparently also entrusted a number of mathematical papers to his friend, Princeton physics professor and (after 1846) first Secretary of the Smithsonian Institution, Joseph Henry. Shortly before his death in 1878, Henry deposited these in the library at the University of Virginia. They did not survive the infamous Rotunda fire of 1895. *History of the U V Math Dept. He was buried in University of Virginia Cemetery, Charlottesville, Virginia. His gravestone reads:
Sacred to the memory of
Charles Bonnycastle
late Professor of Mathematics
in the University of Virginia
who was born in London
on the 22nd day of November 1796
was made professor in the University in 1825
and continued in this station until his death
on the 31st of October 1840.
For Michigan residents around Kalamazoo, Charles Bonnycastle's brief stay in the area with his brother Humphrey is still marked by Bonniecastle Lake west of the city.  







1803 Giusto Bellavitis (22 Nov 1803 in Bassano, Vicenza, Italy - 6 Nov 1880 in Tezze (near Bassano) Italy ) Bellavitis solved various mechanical problems by original methods, among them Hamilton's quaternions. He developed very personal critical observations about the calculus of probabilities and the theory of errors. He also explored physics, especially optics and electrology, and chemistry. As a young man, Bellavitis weighted the problem of a universal scientific language and published a paper on this subject in 1863. He also devoted time to the history of mathematics and, among other things, he vindicated Cataldi by attributing the invention of continued fractions to him. *SAU
According to Charles Laisant,
"His principle achievement, which marks his place, in the future and the present, among the names of geometers that will endure, is the invention of the method of equipollences, a new method of analytic geometry that is both philosophical and fruitful."
Bellavitis anticipated the idea of a Euclidean vector with his notion of equipollence. Two line segments AB and CD are equipollent if they are parallel and have the same length and direction. The relation is denoted AB + BC ≏  AC. In modern terminology, this relation between line segments is an example of an equivalence relation. 

*Wik


1840 Émile Michel Hyacinthe Lemoine (22 Nov 1840 in Quimper, France - 21 Feb 1912 in Paris, France) Lemoine work in mathematics was mainly on geometry. He founded a
new study of properties of a triangle in a paper of 1873 where he studied the point of intersection of the symmedians of a triangle. He had been a founder member of the Association Française pour l'Avancement des Sciences and it was at a meeting of the Association in 1873 in Lyon that he presented his work on the symmedians.
A symmedian of a triangle from vertex A is obtained by reflecting the median from A in the bisector of the angle A. He proved that the symmedians are concurrent, the point where they meet now being called the Lemoine point. Among other results on symmedians in Lemoine's 1873 paper is the result that the symmedian from the vertex A cuts the side BC of the triangle in the ratio of the squares of the sides AC and AB. He also proved that if parallels are drawn through the Lemoine point parallel to the three sides of the triangle then the six points lie on a circle, now called the Lemoine circle. Its centre is at the mid-point of the line joining the Lemoine point to the circumcentre of the triangle. Lemoine gave up active mathematical research in 1895 but continued to support the subject. He had helped to found a mathematical journal, L'intermédiaire des mathématiciens., in 1894 and he became its first editor, a role he held for many years. *SAU
Image:  A triangle with medians (black), angle bisectors (dotted) and symmedians (red). The symmedians intersect in the symmedian point L, the angle bisectors in the incenter I and the medians in the centroid G.

*Wik



1904 Louis-Eugène-Félix Néel (22 Nov 1904; 17 Nov 2000) French physicist, corecipient (with the Swedish astrophysicist Hannes Alfvén) of the Nobel Prize for Physics in 1970 for his pioneering studies of the magnetic properties of solids. His contributions to solid-state physics have found numerous useful applications, particularly in the development of improved computer memory units. About 1930 he suggested that a new form of magnetic behavior might exist - called antiferromagnetism. Above a certain temperature (the Néel temperature) this behaviour stops. Néel pointed out (1947) that materials could also exist showing ferrimagnetism. Néel has also given an explanation of the weak magnetism of certain rocks, making possible the study of the past history of the Earth's magnetic field.*TIS


1942 Guion “Guy” S. Bluford, Jr. (November 22, 1942) is a Black-American astronaut who was the first Black astronaut when he went into space on 30 Aug 1983, aboard the space shuttle Challenger. He next was on the Challenger crew of the German D-1 Spacelab mission (30 Oct  to 6 Nov 1985). His third and fourth flights were on the shuttle Discovery (28 Apr to 6 May 1991 and 2-9 Dec 1992). He became a NASA astronaut in Aug 1979, and spent a total of 688 hours in space. During this time, his NASA biography lists that his technical assignments included “working with Space Station operations, the Remote Manipulator System, Spacelab systems and experiments, Space Shuttle systems, payload safety issues and verifying flight software in the Shuttle Avionics Integration Laboratory and in the Flight Systems Laboratory. *TIS






DEATHS

1606  Henry Billingsley a merchant, amateur linguist, and Lord Mayor of London, died Nov. 22, 1606; we do not know the date or even the year of his birth.  In 1570, long before he became mayor of London, Billingsley published the first English translation of Euclid, which he called Elements of Geometrie.  The book contained a mathematical preface by the renowned John Dee, was published by the eminent London printer John Day, and is famous mostly because of the pop-up geometrical figures that are spread throughout Book 11, on solid geometry. Dee has received quite a bit of attention for his preface (which is not about Euclid but about the proper education of a natural philosopher), and Day has received credit as well for the printing (and the pop-ups) – indeed, both Dee and Day have been featured here as Scientists of the Say.  But Billingsley has generally not received his proper share of the credit.  Since mayors of London have seldom been scholars, it has usually been assumed either that Dee did the translation, or that Billingsley had considerable help from a real scholar.
However, we now know – and should have known since 1879 – that not only did Billingsley make the translation himself, he did it from the original Greek, rather than from one of the Latin translations from Arabic that were available.  We know this because the actual copy of the Greek edition that Billingsley used, printed in Basel in 1533, survives in the Princeton University Library.  Bound with it is a 1558 Latin translation of Euclid’s Elements that has Billingsley’s beautiful signature right on the title page.  And the Greek edition of 1533 has copious annotations and corrections in Greek in the same neat hand that is clearly Billingsley’s.  There seems to  be no doubt that Billingsley read Greek well, made his own translation, and then compared it with the translation of 1558, in order to produce the best text possible.  *Linda Hall Org



1784 Paolo Frisi (13 Apr 1728, 22 Nov 1784) Italian mathematician, astronomer, and physicist who is best known for his work in hydraulics (he designed a canal between Milan and Pavia). He was, however, the first to introduce the lightning conductor into Italy. His most significant contributions to science, however, were in the compilation, interpretation, and dissemination of the work of other scientists, such as Galileo Galilei and Sir Isaac Newton. His work on astronomy was based on Newton's theory of gravitation, studying the motion of the earth (De moto diurno terrae). He also studied the physical causes for the shape and the size of the earth using the theory of gravity (Disquisitio mathematica, 1751) and tackled the difficult problem of the motion of the moon. *TIS



1880 James Craig Watson (January 28, 1838 – November 22, 1880) was a Canadian-American astronomer born in the village of Fingal, Ontario Canada. His family relocated to Ann Arbor, Michigan in 1850.
At age 15 he was matriculated at the University of Michigan, where he studied the classical languages. He later was lectured in astronomy by professor Franz Brünnow.
He was the second director of Detroit Observatory (from 1863 to 1879), succeeding Brünnow. He wrote the textbook Theoretical Astronomy in 1868.
He discovered 22 asteroids, beginning with 79 Eurynome in 1863. One of his asteroid discoveries, 139 Juewa was made in Beijing when Watson was there to observe the 1874 transit of Venus. The name Juewa was chosen by Chinese officials (瑞華, or in modern pinyin, ruìhuá). Another was 121 Hermione in 1872, from Ann Arbor, Michigan, and this asteroid was found to have a small asteroid moon in 2002.
He was a strong believer in the existence of the planet Vulcan, a hypothetical planet closer to the Sun than Mercury, which is now known not to exist (however the existence of small Vulcanoid planetoids remains a possibility). He believed he had seen such two such planets during a July 1878 solar eclipse in Wyoming.
He died of peritonitis at the age of only 42. He had amassed a considerable amount of money through non-astronomical business activities. By bequest he established the James Craig Watson Medal, awarded every three years by the National Academy of Sciences for contributions to astronomy.
The asteroid 729 Watsonia is named in his honour, as is the lunar crater Watson. *Wik





1896 George Washington Gale Ferris Jr. (February 14, 1859,  Galesburg, Illinois - November 22, 1896) was an American civil engineer. He is mostly known for creating the original Ferris Wheel for the 1893 Chicago World's Columbian Exposition.
After a childhood in Nevada, he attended school in California, and then studied engineering at Rensselaer Polytechnic Institute (RPI) in New York, an institution that turned out many of American's top engineers at the time.  Ferris was interested in the engineering potential of structural steel, and he established a company in Pittsburgh to test structural steel and to build bridges, starting with one over the Monongahela River at 6th St. in Pittsburgh (since demolished, like all of the Pittsburgh river bridges of the 1880s and 1890s).  He was apparently very good at his job and a genius with steel.
In 1891, the World’s Columbian Exposition was getting ready to open on the Midway in Chicago in the spring of 1893, and the Director felt that they lacked a “wow factor”, like the Eiffel tower that made its debut at the Paris Exposition in 1889.  So he issued a challenge to the nation's engineers: what can we build at our Exposition to trump the French?  There were not interested in a tower, even if taller.  Ferris had apparently already had an idea for a vertical wheel to carry sightseers up into the air, but now he began to think more grandly, and he proposed a gigantic version of his wheel to the fair organizers.  There were initial questions about safety, and whether it would work, but Ferris was persuasive, and apparently his idea was better that the proposals of anyone else, and his idea was finally approved.  However, he would have to bear construction costs himself, and even worse, it was now mid-December 1892, and the exposition was set to open four months later.
The Ferris wheel drew immense crowds for the six months of the fair, carrying 1.5 million passengers and pulling in 750,000 dollars at fifty cents a pop.  Ferris became America’s most famous engineer almost overnight, and he was only 34 years old.   But it was one of the few bright spots in the rest of his life.  There was considerable contentiousness between the Exposition committee and Ferris's company as to how profits were to be distributed, once receipts paid off the cost of construction (which was about $364,000), and Ferris came out of the lawsuits much poorer than he expected.  He was certainly not happy when Chicago dismantled the Wheel after the fair closed, although it was re-erected in Lincoln Park as a sight-seeing attraction.  Apparently, Chicagoans had a more short-sighted view of their monuments than Parisians, who allowed the Eiffel Tower to stand right where it was built.  Ferris’s health had suffered during the ordeal of construction and went further downhill during the subsequent litigation.  Then his wife left him.  And in 1896, he came down with typhoid fever; he was hospitalized, and breathed his last on Nov. 22, 1896.  He was 37 years old. *Linda Hall Org




1907 Asaph Hall (15 Oct 1829; 22 Nov 1907) American astronomer, discovered and named the two moons of Mars, Phobos and Deimos, and calculated their orbits.Born in Goshen, Conn. and apprenticed as a carpenter at age 16, he had a passion for geometry and algebra. Hall obtained a position at the Harvard Observatory in Cambridge, Mass. in 1857 and became an expert computer of orbits. In August 1862, he joined the staff of the Naval Observatory in Washington, D.C. where he made his discoveries, in mid- Aug 1877, using the Observatory's 26-inch "Great Equatorial" refracting telescope, then the largest of its kind in the world. He stayed there 30 years until 1891. His son, Asaph Hall, Jr., followed him and worked at the Observatory at various times between 1882-1929.*TIS



1944 Sir Arthur Stanley Eddington (28 Dec 1882, 22 Nov 1944) English astrophysicist, and mathematician known for his work on the motion, distribution, evolution and structure of stars. He also interpreted Einstein's general theory of relativity. He was one of the first to suggest (1917) conversion of matter into radiation powered the stars. In 1919, he led a solar eclipse expedition which confirmed the predicted bending of starlight by gravity. He developed an equation for radiation pressure. In 1924, he derived an important mass-luminosity relation. He also studied pulsations in Cepheid variables, and the very high densities of white dwarfs. He sought fundamental relationships between the principal physical constants. Eddington wrote many books for the general reader, including Stars And Atoms  . *TIS  One of my favorite stories about Eddington is this one: Ludwick Silberstein approached Eddington and told him that people believed he was one of only three people in the world who understood general relativity, and that included Einstein. When Eddington didn't respond for a moment he prodded, come on, don't be modest, and Eddington replied, "Oh, no.  It's not that.  I was just trying to figure out who the third was?"  *Mario Livio, Brilliant Blunders
Image:One of Eddington's photographs of the total solar eclipse of 29 May 1919, presented in his 1920 paper announcing its success, confirming Einstein's theory that light "bends" 
*Wik




1986 Nikolai Grigor'evich Chudakov (14 Dec 1904 in Lysovsk, Novo-Burassk, Saratov, Russia - 22 Nov 1986 in Saratov, Russia) Chudakov established a number of important results in number theory. He gave an estimate for the bounds of the zeta-function in the critical strip using techniques which had been introduced a few years earlier by Vinogradov. As a consequence of this work he was able to give a substantially improved remainder term in the asymptotic formula for the number of primes less than a fixed number N. Also, by these method, he improved the estimate for the difference between two consecutive primes. In his later work he extended these results to apply to arbitrary arithmetic progressions. In 1947 Chudakov published On Goldbach-Vinogradov's theorem in the Annals of Mathematics. In this paper he proves Vinogradov's theorem that every large odd integer is representable as a sum of three odd primes. *SAU



1996 Garrett Birkhoff (January 19, 1911, Princeton, New Jersey, USA – November 22, 1996, Water Mill, New York, USA) was an American mathematician. He is best known for his work in lattice theory.During the 1930s, Birkhoff, along with his Harvard colleagues Marshall Stone and Saunders Mac Lane, substantially advanced American teaching and research in abstract algebra. During and after World War II, Birkhoff's interests gravitated towards what he called "engineering" mathematics. Birkhoff's research and consulting work (notably for General Motors) developed computational methods besides numerical linear algebra, notably the representation of smooth curves via cubic splines.
The mathematician George Birkhoff (1884–1944) was his father.*Wik



2007 Andrew Ronald Mitchell (22 June 1921 – 22 November 2007), popularly known as Ron Mitchell, was a British applied mathematician and numerical analyst. He was a professor of mathematics at the University of St Andrews, Dundee, Scotland. He was known for his contribution to the field of numerical analysis of partial differential equations in general and finite difference method and finite element method in particular. Mitchell has authored several influential books on numerical solution of partial differential equations, including "The Finite Element Analysis in Partial Differential Equations" with Richard Wait and "The Finite Difference Method in Partial Differential Equations" with David F. Griffiths.*Wik






Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell