Wednesday, 21 February 2024

On This Day in Math - February 21

  

Durer Perspective



My mother said, "Even you, Paul, can be in only one place at one time." Maybe soon I will be relieved of this disadvantage. Maybe, once I've left, I'll be able to be in many places at the same time. Maybe then I'll be able to collaborate with Archimedes and Euclid.
~Paul Erdos

The 52nd day of the year; The month and day are simultaneously prime a total of 52 times in a non-leap year. *Tanya Khovanova, Number Gossip How many times in a leap year ?

52 is also the maximum number of moves needed to solve the 15 puzzle from the worst possible start. *Mario Livio



52 is the number of 8-digit primes (on a calculator) that remain prime if viewed upside down, in a mirror, or upside down in a mirror. *Prime Curios

There are 52 letters in the names of the cards in a standard deck: ACE KING QUEEN JACK TEN
(This also works in Spanish. any other languages for which this is true?) *Futility Closet    (One correspondent suggested his names for cards in Spanish have 54 letters.  Any good Spanish speakers care to comment?)



EVENTS

1632 Galileo's epic Dialogue on the Two Chief World Systems is Published in Florence. After receiving, what Galileo viewed as permission to write about "the systems of the world" from the new pope, Urban VIII. Greeted with Praise from scholars across Europe, it would eventually be Galileo's downfall. *Brody & Brody, The Science Class You Wish You Had



1699 Newton elected the second foreign member of the French Academy. See January 28, 1699. [American Journal of Physics, 34(1966), 22] *VFR Thony Christie points out in a comment (below) that "Newton was appointed foreign associate of the Académie Royale des Sciences along with four others so to claim he was the second is more than somewhat dubious." (My Thanks)


1727/8 Isaac Greenwood began his “Publick” lectures at Harvard as the first Hollis Professor of Mathematics and Natural Philosophy. The lectures were open to the entire university. [I. B. Cohen, Some Early Tools of American Science, p. 35.] *VFR


1811, as Humphry Davy read a paper to the Royal Society, he introduced the name "chlorine" from the Greek word for "green," for the bright yellow green gas chemists then knew as oxymuriatic gas. In his paper, On a Combination of Oxymuriatic Gas and Oxygene Gas, Davy reported on his numerous experiments with oxymuratic gas, which appeared to have many of the reactive properties of oxygen. Hydrochloric acid was then known as muriatic acid, and when chlorine was first obtained from a reaction with the acid, the yellow green gas had been thought to be a compound containing oxygen. Later, Davy's careful work would show that the chlorine gas was in fact an element, unable to be decomposed into any simpler substances. *TIS

The element was first studied in detail in 1774 by Swedish chemist Carl Wilhelm Scheele, and he is credited with the discovery. Scheele produced chlorine by reacting MnO2 (as the mineral pyrolusite) with HCl:

4 HCl + MnO_2 → MnCl_2 + 2 H_2O + Cl_2

Scheele observed several of the properties of chlorine: the bleaching effect on litmus, the deadly effect on insects, the yellow-green color, and the smell similar to aqua regia.[14] He called it "dephlogisticated muriatic acid air" since it is a gas (then called "airs") and it came from hydrochloric acid (then known as "muriatic acid"). He failed to establish chlorine as an element. *Wik

Carl Wilhelm Scheele




1831 Michael Faraday in a letter to William Whewell regarding a recent publication by Whewell (Journal of the Royal Institution of England (1831), 437-453.), “Your remarks upon chemical notation with the variety of systems which have arisen, had almost stirred me up to regret publicly that such hindrances to the progress of science should exist. I cannot help thinking it a most unfortunate thing that men who as experimentalists, philosophers are the most fitted to advance the general cause of science; knowledge should by promulgation of their own theoretical views under the form of nomenclature, notation, or scale, actually retard its progress. *Isaac Todhunter, William Whewell, (1876), Vol. 1., 307.

Faraday, *Wik



1845 The ship Charles Heddle sailed north from Mauritius and encountered a terrible storm. Striking sails and scudding before the wind they proceeded four times around the center in clockwise loops hundreds of miles wide. After six days a clearing sky allowed the Captain to take a reading and realize that as they circled, they had also been driven back nearly to their starting point. Reading the log of the Charles Heddle and other reports of this storm, Henry Piddington coined the word cyclone, from the Greek for "coils of a snake,". After he used the term in his "The Sailor's Horn-Book for the Law of Storms" it became a common term.




1880 Noyes Chapman had applied for a patent on his "Block Solitaire Puzzle" (the 15 puzzle above in number facts) on February 21, 1880. However, that patent was rejected, likely because it was not sufficiently different from the August 20, 1878 "Puzzle-Blocks" patent (US 207124) granted to Ernest U. Kinsey 
His was a 6x6 square with letters, blanks and symbols.



1908 Birth date of Dr. Irving Joshua Matrix, the greatest numerologist who (n)ever lived. At the age of seven he astonished his minister Father when he pointed out that 8 is the holiest number of all: “The other numbers with holes are 0, 6, and 9, and sometimes 4, but 8 has two holes, therefore it is the holiest.” Martin Gardner first drew attention to Dr. Matrix in his January 1960 column “Mathematical Games,” in Scientific American. For more details, see The Incredible Dr. Matrix, by Martin Gardner [p. 3-4]. *VFR




1953, Francis Crick and James Watson reached their conclusion about the double helix structure of the DNA molecule. They made their first announcement on Feb 28, and their paper, A Structure for Deoxyribose Nucleic Acid, was published in the 25 Apr 1953 issue of journal Nature. *TIS

1958: The Peace symbol is designed and completed by Gerald Holtom #OTD.
*History Time

1996 Cox Enterprises announces it was buying a one-third interest in Digital Domain, a computer-generated special effects company, in order to heighten the use of special effects in media. The deal reflected "another step in the rapid convergence of various computer, software, entertainment and media companies," The New York Times wrote. *CHM

2012 The engineering profession's highest honors for 2012, presented by the National Academy of Engineering (NAE), recognize ground-breaking contributions to the development of the modern liquid crystal display and achievements that led to a curriculum that encourages engineering leadership. The awards, announced today, will be presented at a gala dinner event in Washington, DC on February 21, 2012.
George H. Heilmeier, Wolfgang Helfrich, Martin Schadt, and T. Peter Brody will receive the Charles Stark Draper Prize a $500,000 annual award that honors engineers whose accomplishments have significantly benefited society "for the engineering development of the Liquid Crystal Display (LCD) that is utilized in billions of consumer devices." *AAAS/Science Newsletter, January 19, 2012
The Draper prize is named for Charles Stark Draper, the "father of inertial navigation", an MIT professor and founder of Draper Laboratory.
The Priza was first presented in 1989 to Jack S. Kilby and Robert N. Noyce for their independent development of the monolithic integrated circuit.





BIRTHS

1591 Girard Desargues (21 Feb 1591 in Lyon, France - ? Sept 1661 in Lyon, France) He did noted work in projective geometry. *VFR Desargues' most important work, the one in which he invented his new form of geometry, has the title Rough draft for an essay on the results of taking plane sections of a cone (Brouillon project d'une atteinte aux evenemens des rencontres du Cone avec un Plan). A small number of copies was printed in Paris in 1639. Only one is now known to survive, and until this was rediscovered, in 1951, Desargues' work was known only through a manuscript copy made by Philippe de la Hire (1640 - 1718). The book is short, but very dense. It begins with pencils of lines and ranges of points on a line, considers involutions of six points (Desargues does not use or define a cross ratio), gives a rigorous treatment of cases involving 'infinite' distances, and then moves on to conics, showing that they can be discussed in terms of properties that are invariant under projection. We are given a unified theory of conics.
Desargues' famous 'perspective theorem' - that when two triangles are in perspective the meets of corresponding sides are colinear - was first published in 1648, in a work on perspective by Abraham Bosse. *SAU


1764 Ruan Yuan (Chinese characters: 阮元) (21 Feb 1764 in Yangzhou, Jiangsu province, China - 27 Nov 1849 in Yangzhou, Jiangsu province, China), was a scholar official in the Qing Dynasty in Imperial China. He won jinshi (high) honors in the imperial examinations in 1789 and was subsequently appointed to the Hanlin Academy. He was famous for his work Biographies of Astronomers and Mathematicians and for his editing the Shi san jing zhu shu (Commentaries and Notes on the Thirteen Classics) for the Qing emperor.*Wik


1788 Francis Ronalds (21 February 1788 – 8 August 1873) came from a family of cheese purveyors, a profession he adopted for some years (while considering changing his name to Wensleydale).  But around 1810, he abruptly shifted his attention to electricity (this was 10 years after Volta's battery had opened up a new world for electrical investigators).  Ronalds invented a slew of ingenious electrical devices, including an electrograph that would measure the electricity in the atmosphere.  He also started collecting books and pamphlets on electricity, a collection that would grow into a sizable library.

In 1816, Ronalds built a working telegraph in the garden of the family house in Hammersmith in west London.  Part of it was underground, but above ground he strung out 8 miles of insulated wire in ribbon-candy fashion, with clocks at each end whose faces contained letters instead of numbers; the electrical signals in some way synchronized the clocks and spelled out a message.  Apparently, the device worked; he gave a demonstration on 5 August, 1816 for the Admiralty, offering it to them gratis, but the Secretary of the Admiralty, John Barrow, rejected it as an unnecessary invention, preferring the semaphore telegraph then in use.  Two years later, Barrow distinguished himself by sending out the first ships in search of a Northwest Passage, but he has never quite lived down the ignominy of rejecting the electrical telegraph as useless.  It would be 20 more years before England re-entered the telegraph business, and by that time, they were well behind the Americans.  Many today regard Ronalds as the true inventor of the telegraph, and there was considerable scholarly commotion in his behalf in 2016, the bicentennial of his invention.

Ronalds continued to invent and collect books throughout a very long life (he died in 1873, at age 85).  In the 1840s, with the invention of photography, he found a way to continuously photograph a full 24 hours of readings of his electrograph (second image).  His Library grew to accommodate 2000 books and 4000 pamphlets; after his death, it was deposited with the Institution of Engineering and Technology in London, and finally donated to that institution in 1976.

Ronalds published a book on his telegraph, Descriptions of an Electrical Telegraph, and of some other Electrical Apparatus (1823).  This work is surprisingly not in our collections, a deficiency we will try to remedy in the near future.  Ironically, we just last week acquired the principal book on semaphore telegraphy, the system that Barrow preferred to Ronalds’ electrical telegraph.

As a final note, the Ronalds house in Hammersmith, where his telegraph was first laid out, was acquired in the 1870s by designer William Morris, and is today known as Kelmscott House.  There is a plaque on the wall that commemorates Ronalds' garden telegraph (first image).  The only surviving portrait of Ronalds, painted not long before his death, is in the National Portrait Gallery, London (third image). *Linda Hall Org

*Wik




1849 Édouard Gaston (Daniel) Deville (21 Feb 1849; 21 Sep 1924 at age 75)
was a French-Canadian surveyor was a French-born Canadian surveyor of Canadian lands (1875-1924) who perfected the first practical method of photogrammetry, or the making of maps based on photography. His system used projective grids of images taken from photographs made with a camera and theodolite mounted on the same tripod. Photographs were taken from different locations, at precise predetermined angles, with measured elevations. Each photograph slightly overlapped the preceding one. With enough photographs and points of intersection, a map could be prepared, including contour lines. He also invented (1896) the first stereoscopic plotting instrument called the Stereo-Planigraph, though its complexity resulted in little use. *TIS

1965 Frances Evelyn Cave-Browne-Cave FRAS (21 February 1876–30 March 1965) was an English mathematician and educator.

Frances Cave-Browne-Cave was the daughter of Sir Thomas Cave-Browne-Cave and Blanche Matilda Mary Ann Milton. She was educated at home in Streatham Common with her sisters and entered Girton College, Cambridge, with her elder sister Beatrice Mabel Cave-Browne-Cave in 1895. She obtained a first-class degree and she would have been Fifth Wrangler in 1898 if she had been a man(Immediately behind G H Hardy.). She took Part II of the Mathematical Tripos in 1899.

Like her sister, she was usually known by the single surname Cave professionally. Along with Beatrice, she worked with Karl Pearson at University College London. Her work was funded by the first research grant offered at Girton: an Old Students' Research Studentship from Girton, provided by Florence Margaret Durham.Her research in the field of meteorology produced two publications in the Proceedings of the Royal Society which discussed barometric measurements, and was read to the British Association at Cambridge in 1904.

In 1903, Cave returned to Girton as a fellow. She prioritised teaching over research, and focused on developing the weakest students because she felt that was where the biggest difference could be made. She became the director of studies in 1918. She was on the executive council of the college and was largely responsible for drafting the charter of incorporation granted in 1924. On the 11 November 1921 she was elected a Fellow of the Royal Astronomical Society. Cave was made honorary fellow of Girton in 1942.

Cave received an MA from Trinity College, Dublin, in 1907 (since the rules of Cambridge University did not then permit women to take degrees) and from Cambridge in 1926.

Cave retired to Southampton in 1936. She died in Shedfield in a nursing home on 30 March 1965




1915 Evgeny Mikhailovich Lifshitz FRS (February 21, 1915 – October 29, 1985) was a leading Soviet physicist of Jewish origin and the brother of physicist Ilya Mikhailovich Lifshitz. (Some commonly encountered alternative transliterations of his names include Yevgeny or Evgenii and Lifshits or Lifschitz.) Lifshitz is well known in general relativity for coauthoring the BKL conjecture concerning the nature of a generic curvature singularity. As of 2006, this is widely regarded as one of the most important open problems in the subject of classical gravitation.
With Lev Landau, Lifshitz co-authored Course of Theoretical Physics, an ambitious series of physics textbooks, in which the two aimed to provide a graduate-level introduction to the entire field of physics. These books are still considered invaluable and continue to be widely used. Landau's wife strongly criticized his scientific abilities, hinting at how much of their joint work was done by Lifshitz and how much by Landau. Despite the sniping, he is well known for many invaluable contributions, in particular to quantum electrodynamics, where he calculated the Casimir force in an arbitrary macroscopic configuration of metals and dielectrics.*Wik
Offer Pade' added that The Course of Theoretical Physics is a ten-volume series of books covering theoretical physics that was initiated by Lev Landau and written in collaboration with his student Evgeny Lifshitz starting in the late 1930s. It is said that Landau composed much of the series in his head while in an NKVD prison in 1938–1939. (Wikipedia)
I have used several of the book in the series and found them excellent.



Landau(L) with Lifshitz(R) 




DEATHS

1900 Charles Piazzi Smyth FRSE FRS FRAS FRSSA (3 January 1819, Naples, Italy – 21 February 1900), was Astronomer Royal for Scotland from 1846 to 1888, well known for many innovations in astronomy and his pyramidological and metrological studies of the Great Pyramid of Giza. *Wik

1901 George Francis Fitzgerald (3 Aug 1851, 21 Feb 1901 at age 49) Irish physicist whose suggestion of a way to produce waves helped lay a foundation for wireless telegraphy. He also first developed a theory, independently discovered by Hendrik Lorentz, that a material object moving through an electromagnetic field would exhibit a contraction of its length in the direction of motion. This is now known as the Lorentz-FitzGerald contraction, which Einstein used in his own special theory of relativity. He also was first to propose the structure of comets as a head made of large stones, but a tail make of such smaller stones (less than 1-cm diam.) that the pressure of light radiation from the sun could deflect them. FitzGerald also studied electrolysis as well as electromagnetic radiation.*TIS
In his letter to Science dated May 2, 1889, which was quite brief, FitzGerald proposed that the best way to explain the null result of the Michelson-Morley experiment was to assume that the length of an object was not a constant, but that objects moving through the ether with a velocity v were contracted by a factor of v^2/c^2, where c is the speed of light. *Linda Hall Org




1912  Émile Michel Hyacinthe Lemoine (22 Nov 1840 in Quimper, France - 21 Feb 1912 in Paris, France) Lemoine work in mathematics was mainly on geometry. He founded a new study of properties of a triangle in a paper of 1873 where he studied the point of intersection of the symmedians of a triangle. He had been a founder member of the Association Française pour l'Avancement des Sciences and it was at a meeting of the Association in 1873 in Lyon that he presented his work on the symmedians.
A symmedian of a triangle from vertex A is obtained by reflecting the median from A in the bisector of the angle A. He proved that the symmedians are concurrent, the point where they meet now being called the Lemoine point. Among other results on symmedians in Lemoine's 1873 paper is the result that the symmedian from the vertex A cuts the side BC of the triangle in the ratio of the squares of the sides AC and AB. He also proved that if parallels are drawn through the Lemoine point parallel to the three sides of the triangle then the six points lie on a circle, now called the Lemoine circle. Its centre is at the mid-point of the line joining the Lemoine point to the circumcentre of the triangle. Lemoine gave up active mathematical research in 1895 but continued to support the subject. He had helped to found a mathematical journal, L'intermédiaire des mathématiciens., in 1894 and he became its first editor, a role he held for many years. *SAU   His mathematical recreation books are still popular in France.
Lemoine has been described by Nathan Altshiller Court as a co-founder (along with Henri Brocard and Joseph Neuberg) of modern triangle geometry, a term used by William Gallatly, among others. In this context, "modern" is used to refer to geometry developed from the late 18th century onward. Such geometry relies on the abstraction of figures in the plane rather than analytic methods used earlier involving specific angle measures and distances. The geometry focuses on topics such as collinearity, concurrency, and concyclicity, as they do not involve the measures listed previously.
The Lemoine point; L. The black lines are medians, the dotted lines are angle bisectors and the red lines are the symmedians (the reflections of the black lines in the dotted lines).





1912 Osborne Reynolds (23 Aug 1842 in Belfast, Ireland - 21 Feb 1912 in Watchet, Somerset, England) was an Irish mathematician best known for introducing the Reynolds number classifying fluid flow.*SAU

1926 Heike Kamerlingh Onnes (21 Sep 1853, 21 Feb 1926 at age 72)Dutch physicist who was awarded the 1913 Nobel Prize for Physics for his work on low-temperature physics in which he liquified hydrogen and helium. From his studies of the resistance of metals at low temperatures, he discovered superconductivity (a state in which certain metals exhibit almost no electrical resistance at a temperature near absolute zero).*TIS

1932 James Mercer FRS (15 January 1883 – 21 February 1932) was a mathematician, born in Bootle, close to Liverpool, England. He was educated at University of Manchester, and then University of Cambridge. He became a Fellow, saw active service at the Battle of Jutland in World War I, and after decades of suffering ill health died in London, England.
He proved Mercer's theorem, which states that positive definite kernels can be expressed as a dot product in a high-dimensional space. This theorem is the basis of the kernel trick (applied by Aizerman), which allows linear algorithms to be easily converted into non-linear algorithms. *Wik

1938 George Ellery Hale (29 Jun 1868, 21 Feb 1938 at age 69). U S astronomer known for his development of important astronomical instruments. To expand solar observations and promote astrophysical studies he founded Mt. Wilson Observatory (Dec 1904). He discovered that sunspots were regions of relatively low temperatures and high magnetic fields. Hale hired Harlow Shapley and Edwin Hubble as soon as they finished their doctorates, and he encouraged research in galactic and extragalactic astronomy as well as solar and stellar astrophysics. Hale planned and tirelessly raised funds for the 200-inch reflecting telescope at the Palomar Mountain Observatory completed in 1948, after his death, and named for him—the Hale telescope. *TIS
Originally, the Hale Telescope was going to use a primary mirror of fused quartz manufactured by General Electric, but instead the primary mirror was cast in 1934 at Corning Glass Works in New York State using Corning's then new material called Pyrex (borosilicate glass). Pyrex was chosen for its low expansion qualities so the large mirror would not distort the images produced when it changed shape due to temperature variations (a problem that plagued earlier large telescopes).
The 5 meter (16 ft. 8 in.) mirror in December 1945 at the Caltech Optical Shop when grinding resumed following World War 2. The honeycomb support structure on the back of the mirror is visible through the surface.*Wik

Gavin Putland added , "Hale co-invented the spectroheliograph."





1962 Julio Rey Pastor (14 August 1888 – 21 February 1962) was a Spanish mathematician and historian of science. Rey proposed the creation of a "seminar in mathematics to arouse the research spirit of our school children.” His proposal was accepted and in 1915 the JAE created the Mathematics Laboratory and Seminar, an important institution for the development of research on this field in Spain.
In 1951, he was appointed director of the Instituto Jorge Juan de Matemáticas in the CSIC. His plans in Spain included two projects: the creation, within the CSIC, of an Institute of Applied Mathematics, and the foundation of a Seminar on the History of Science at the university. *Wik

1996 Hans-Joachim Bremermann​ (14 Sept 1926 in Bremen, Germany - 21 Feb 1996 in Berkeley, California, USA) was a German-American mathematician and biophysicist. He worked on computer science and evolution, introducing new ideas of how mating generates new gene combinations. Bremermann's limit, named after him, is the maximum computational speed of a self-contained system in the material universe.*Wik
1993 Inge Lehmann  (13 May 1888 – 21 February 1993) was a Danish seismologist and geophysicist. In 1936, she discovered that the Earth has a solid inner core inside a molten outer core. Before that, seismologists believed Earth's core to be a single molten sphere, being unable, however, to explain careful measurements of seismic waves from earthquakes, which were inconsistent with this idea. Lehmann analysed the seismic wave measurements and concluded that Earth must have a solid inner core and a molten outer core to produce seismic waves that matched the measurements. Other seismologists tested and then accepted Lehmann's explanation. Lehmann was also one of the longest-lived scientists, having lived for over 104 years *Wik 
Memorial to Lehmann in Copenhagen (by Elisabeth Toubro)








1996 Hans-Joachim Bremermann​ (14 September, 1926 - 21 February, 1996) was a German-American mathematician and biophysicist. He worked on computer science and evolution, introducing new ideas of how mating generates new gene combinations. Bremermann's limit, named after him, is the maximum computational speed of a self-contained system in the material universe.
 Bremermann's limit, named after him, is the maximum computational speed of a self-contained system in the material universe.
Bremermann came to the United States in 1952 and held a research associate position at Stanford University. In 1953, he was appointed a research fellow at Harvard University. He returned to Münster for 1954–55.

After returning to the United States, he was a mathematics researcher at the Institute for Advanced Study in Princeton (1955–57), and then appointed assistant professor at the University of Washington, Seattle (1957–58). He then spent another year researching at Princeton (1958–59), this time in physics.

In 1959, he became an associate professor of mathematics at University of California, Berkeley, where he remained for the rest of his career, being promoted to full professor in 1966. He held chairs at Berkeley in mathematics and biophysics. By the 1960s, his work had turned towards the theory of computation and evolutionary biology, in which he studied complexity theory, genetic search algorithms, and pattern recognition.

In 1978 he gave the "What Physicists Do" series of lectures at Sonoma State University, discussing physical limitations to mathematical understanding of physical and biological systems. He continued work in mathematical biology through the 1980s, developing mathematical models of parasites and disease, neural networks, and AIDS epidemiology and pathology. He retired from the University of California in 1991.*Wik



2009 Ilya Piatetski-Shapiro (30 March 1929 – 21 February 2009) was a Russian-Jewish mathematician. During a career that spanned 60 years he made major contributions to applied science as well as theoretical mathematics. In the last forty years his research focused on pure mathematics; in particular, analytic number theory, group representations and algebraic geometry. His main contribution and impact was in the area of automorphic forms and L-functions.
For the last 30 years of his life he suffered from Parkinson's disease. However, with the help of his wife Edith, he was able to continue to work and do mathematics at the highest level, even when he was barely able to walk and speak.*Wik


Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

No comments: