Thursday, 29 January 2015

On This Day in Math - January 29


There is no philosophy which is not founded upon knowledge of the phenomena, but to get any profit from this knowledge it is absolutely necessary to be a mathematician.
~Daniel Bernoulli

The 29th day of the year; 229 = 536870912 a nine-digit number with no digit repeated. Is it possible to create a power of a single digit number that has ten distinct digits?

EVENTS
1697 (o.s.) Newton received two challenge problems from Johann Bernoulli, one being the Brachistochrone problem published in Acta eruditorum the previous June and addressed “to the shrewdest mathematicians in the world.” The next day Newton posted his solution to the Royal Society. When Bernoulli saw the anonymous solution he recognized it as “ex ungue leonem” (as the lion is recognized by his paw). *Westfall, Never at Rest, pg 581

1769 "On the morning of the 29 January 1769, seven ‘transit’ astronomers went to Catherine the Great’s Winter Palace in St Petersburg because the Empress had requested to meet her astronomical army before they set out to their destinations across the Russian empire. The German Georg Moritz Lowitz and his assistant, the Russian Pjotr Inochodcev were going to Guryev, Russia (modern Atyrau, Kazakhstan), the Russian Stepan Rumovsky and the Swiss Jacques André Mallet and Jean-Louis Pictet were all travelling to different locations on the Kola peninsula, the Germans Christoph Euler was ordered to Orsk and Wolfgang Ludwig Krafft to Orenburg. *Andrea Wulf, Transit of Venus Web Site

1824 Even right at the end of his life, former President Thomas Jefferson was still reporting on the current news in mathematics. On this day he writes to Patrick K. Rogers concerning the abandonment of fluxional calculus at Cambridge in favour of the Leibnizian notation , "The English generally have been very stationary in later times, and the French, on the contrary, so active and successful, particularly in preparing elementary books, in mathematics and natural sciences, that those who wish for instruction without caring from what nation they get it, resort universally to the latter language. Besides the earlier and invaluable works of Euler and Bezout, we have latterly that of Lacroix in mathematics, of Legendre in geometry, . . . to say nothing of the many detached essays of Monge and others, and the transcendent labours of Laplace, and I am informed by a highly instructed person recently from Cambridge, that the mathematicians of that institution, sensible of being in the rear of those of the continent, and ascribing the cause much to their long-continued preference of the geometrical over the analytical methods, which the French have so long cultivated and improved, have now adopted the latter; and that they have also given up the fluxionary, for the differential calculus. " *John Fauval, Lecture at Univ of Va.

1957 SRI and GE Meet to Choose a Place for ERMA's MICR Encoding
ERMA (Electronic Recording Machine - Accounting), developed by SRI and General Electric for the Bank of America in California, employed Magnetic Ink Character Recognition (MICR) as a tool that captures data from checks. IBM was making a strong case to place the encoding at the top of a check. SRI and GE conducted a series of tests that clearly demonstrated the advantage of the bottom-of-the-check encoding. *CHM

1970 Yuri Matiyasevich presents proof of Hilbert's 10th Problem.  Having been frustrated  by the problem, he had given up hope of solving it. In December of the previous year after having been asked to review an article by Robinson, he was inspired by the novelty of her approach and went back to work on H10.  By Jan 3, 1970 he had a proof.  He would present the proof on January 29, 1970


BIRTHS
1688 Emanuel Swedenborg (29 Jan 1688; 29 Mar 1772) Swedish scientist, philosopher and theologian. While young, he studied mathematics and the natural sciences in England and Europe. From Swedenborg's inventive and mechanical genius came his method of finding terrestrial longitude by the Moon, new methods of constructing docks and even tentative suggestions for the submarine and the airplane. Back in Sweden, he started (1715) that country's first scientific journal, Daedalus Hyperboreus. His book on algebra was the first in the Swedish language, and in 1721 he published a work on chemistry and physics. Swedenborg devoted 30 years to improving Sweden's metal-mining industries, while still publishing on cosmology, corpuscular philosophy, mathematics, and human sensory perceptions. *TIS

1700 Daniel Bernoulli (29 January 1700 (8 Feb new style), 8 March 1782) was a Dutch-Swiss mathematician and was one of the many prominent mathematicians in the Bernoulli family. He is particularly remembered for his applications of mathematics to mechanics, especially fluid mechanics, and for his pioneering work in probability and statistics. Bernoulli's work is still studied at length by many schools of science throughout the world. The son of Johann Bernoulli (one of the "early developers" of calculus), nephew of Jakob Bernoulli (who "was the first to discover the theory of probability"), and older brother of Johann II, He is said to have had a bad relationship with his father. Upon both of them entering and tying for first place in a scientific contest at the University of Paris, Johann, unable to bear the "shame" of being compared as Daniel's equal, banned Daniel from his house. Johann Bernoulli also plagiarized some key ideas from Daniel's book Hydrodynamica in his own book Hydraulica which he backdated to before Hydrodynamica. Despite Daniel's attempts at reconciliation, his father carried the grudge until his death.
He was a contemporary and close friend of Leonhard Euler. He went to St. Petersburg in 1724 as professor of mathematics, but was unhappy there, and a temporary illness in 1733 gave him an excuse for leaving. He returned to the University of Basel, where he successively held the chairs of medicine, metaphysics and natural philosophy until his death.
In May, 1750 he was elected a Fellow of the Royal Society. He was also the author in 1738 of Specimen theoriae novae de mensura sortis (Exposition of a New Theory on the Measurement of Risk), in which the St. Petersburg paradox was the base of the economic theory of risk aversion, risk premium and utility.
One of the earliest attempts to analyze a statistical problem involving censored data was Bernoulli's 1766 analysis of smallpox morbidity and mortality data to demonstrate the efficacy of vaccination. He is the earliest writer who attempted to formulate a kinetic theory of gases, and he applied the idea to explain Boyle's law. He worked with Euler on elasticity and the development of the Euler-Bernoulli beam equation. *Wik

1761 Josef (also José or Joseph) de Mendoza y Ríos (29 January 1761; Sevilla, Spain - 4 March 1816 Brighton, England) was a Spanish astronomer and mathematician of the 18th century, famous for his work on navigation. The first work of Mendoza y Ríos was published in 1787: his treatise, Tratado de Navegación, about the science and technique of navigation in two tomes. He also published several tables for facilitating the calculations of nautical astronomy and useful in navigation to calculate the latitude of a ship at sea from two altitudes of the sun, and the longitude from the distances of the moon from a celestial body.
In the field of the nautical instruments, he improved the reflecting circle.
In 1816, he was elected a foreign member of the Royal Swedish Academy of Sciences. @Wik

1810 Ernst Eduard Kummer (29 Jan 1810; 14 May 1893) He was professor at the University of Breslau(now Wroclaw, Poland) in 1842-1855 and developed his theory of ideals here. Kronecker studied with him. Later he replaced Dirichlet at The University of Berlin. He died at age 83, after a short attack of influenza. German mathematician whose introduction of ideal numbers, which are defined as a special subgroup of a ring, extended the fundamental theorem of arithmetic to complex number fields. He worked on Function theory, and extended Gauss's work on hypergeometric series, giving developments that are useful in the theory of differential equations. He was the first to compute the monodromy groups of these series. Later. Kummer devoted himself to the study of the ray systems, but treated these geometrical problems algebraically. He also discovered the fourth order surface based on the singular surface of the quadratic line complex. This Kummer surface has 16 isolated conical double points and 16 singular tangent planes. *TIS and others An oft told, and almost certianly untrue anecdote is told about Kummer: Kummer was so inept at simple arithmetic that he often asked students to help him in class. On one occasion, Kummer sought the result of a simple multiplication. "Seven times nine," he began. "Seven times nine is er - ah - ah - seven times nine is..." "Sixty-one," a mischievous student suggested and Kummer wrote the "answer" on the blackboard. "Sir," another one interjected, "it should be sixty-seven." "Come, gentlemen, it can't be both," Kummer exclaimed. "It must be one or the other!" According to Erdos, Kumer reasoned out the answer as follows, -It can't be 61 as that is prime, as is 67, and 65 is a multiple of five, and 69 is too big, so it must be 63.

1817 William Ferrel (29 Jan 1817; 18 Sep 1891) American meteorologist who was an important contributor to the understanding of oceanic and atmospheric circulation. He was able to show the interrelation of the various forces upon the Earth's surface, such as gravity, rotation and friction. Ferrel was first to mathematically demonstrate the influence of the Earth's rotation on the presence of high and low pressure belts encircling the Earth, and on the deflection of air and water currents. The latter was a derivative of the effect theorized by Gustave de Coriolis in 1835, and became known as Ferrel's law. Ferrel also considered the effect that the gravitational pull of the Sun and Moon might have on the Earth's rotation and concluded (without proof, but correctly) that the Earth's axis wobbles a bit. *TIS (A more complete biography is here)

1838 Edward Williams Morley (29 Jan 1838; 24 Feb 1923) American chemist who is best known for his collaboration with the physicist A.A. Michelson in an attempt to measure the relative motion of the Earth through a hypothetical ether (1887). He also studied the variations of atmospheric oxygen content. He specialized in accurate quantitative measurements, such as those of the vapour tension of mercury, thermal expansion of gases, or the combining weights of hydrogen and oxygen. Morley assisted Michelson in the latter's persuit of measurements of the greatest possible accuracy to detect a difference in the speed of light through an omnipresent ether. Yet the ether could not be detected and the physicists had seriously to consider that the ether did not exist, even questioning much orthodox physical theory. *TIS

1888 Sydney Chapman (29 Jan 1888; 16 Jun 1970) English mathematician and physicist noted for his research in geophysics. After graduation (1910) he worked at the Greenwich Observatory, but returned to Cambridge upon the outbreak of WW I. Between 1915 and 1917 he completed a series of important papers on thermal diffusion and the fundamentals of gas dynamics. He developed systematic approximations to the Maxwell-Boltzmann formulation for the velocity distribution function for interacting particles under general force laws. During WW II he worked on military operational research and incendiary bomb problems. Chapman's main area of research was geomagnetism, beginning in 1913 and extending to terrestrial and interplanetary magnetism, the ionosphere and the aurora borealis.*TIS

1894 Miss Helen Almira Shaffer, A. M., LL. D., President of Welleslev College,
died of pneumonia at the college, on January 29, aged 54 years. She was chief teacher
of Mathematics for ten years in the St. Louis High School. In 1877 she accepted the
professorship of Mathematics in Wellesley, which she filled until 1888, when she became
president of that institution. *The American Mathematical Monthly Vol. 1, No. 2, Feb., 1894

1926 Abdus Salam (29 Jan 1926; 21 Nov 1996) Pakistani-British nuclear physicist who shared the 1979 Nobel Prize for Physics with Steven Weinberg and Sheldon Lee Glashow. Each had independently formulated a theory explaining the underlying unity of the weak nuclear force and the electromagnetic force. His hypothetical equations, which demonstrated an underlying relationship between the electromagnetic force and the weak nuclear force, postulated that the weak force must be transmitted by hitherto-undiscovered particles known as weak vector bosons, or W and Z bosons. Weinberg and Glashow reached a similar conclusion using a different line of reasoning. The existence of the W and Z bosons was eventually verified in 1983 by researchers using particle accelerators at CERN. *TIS

1928 O. Timothy O’Meara born in South Africa. This expert in quadratic forms is now Provost at the University of Notre Dame. *VFR On October 8, 2008, the Mathematics Library at Notre Dame was rededicated and named for Prof. O. Timothy O’Meara. Prof. O’Meara is a noted Mathematician, who has been on the faculty of the Mathematics Department since 1962, and twice served as its chairman. In 1976 he was named to the Kenna Endowed Chair in Mathematics. He is noted for serving as the first lay Provost of the University, 1978-1996. He is now an emeritus faculty member, but still very active and interested in the library *ND Web Site

1928 Joseph Bernard Kruskal, Jr. (January 29, 1928 – September 19, 2010) was an American mathematician, statistician, computer scientist and psychometrician. He was a student at the University of Chicago and at Princeton University, where he completed his Ph.D. in 1954, nominally under Albert W. Tucker and Roger Lyndon, but de facto under Paul Erdős with whom he had two very short conversations.Kruskal has worked on well-quasi-orderings and multidimensional scaling.
He was a Fellow of the American Statistical Association, former president of the Psychometric Society, and former president of the Classification Society of North America.
In statistics, Kruskal's most influential work is his seminal contribution to the formulation of multidimensional scaling. In computer science, his best known work is Kruskal's algorithm for computing the minimal spanning tree (MST) of a weighted graph. In combinatorics, he is known for Kruskal's tree theorem (1960), which is also interesting from a mathematical logic perspective since it can only be proved nonconstructively. Kruskal also applied his work in linguistics, in an experimental lexicostatistical study of Indo-European languages, together with the linguists Isidore Dyen and Paul Black.
Kruskal was born in New York City to a successful fur wholesaler, Joseph B. Kruskal, Sr. His mother, Lillian Rose Vorhaus Kruskal Oppenheimer, became a noted promoter of Origami during the early era of television. He died in Princeton. *Wik


DEATHS
1707 Otto Mencke (22 March (OS) April 2, 1644 – 18 Jan (OS) 29 Jan 1707) was a 17th-century German philosopher and scientist. He obtained his doctorate at the University of Leipzig in 1666 with a thesis entitled: Ex Theologia naturali — De Absoluta Dei Simplicitate, Micropolitiam, id est Rempublicam In Microcosmo Conspicuam.
He is notable as being the founder of the very first scientific journal in Germany, established 1682, entitled: Acta Eruditorum. *Wik

1715 Bernard Lamy (15 June 1640, in Le Mans, France – 29 January 1715, in Rouen, France) was a French Oratorian mathematician and theologian. He wrote on geometry and mechanics and developed the idea of a parallelogram of forces at about the same time as Newton and Verignon. The Law of Sines as applied to three static forces in mechanics is sometimes called Lamy's Rule. (Would provide an interesting variation for Pre-calc classes)

1859 William Cranch Bond (9 Sep 1789, 29 Jan 1859) American astronomer who, with his son, George Phillips Bond (1825-65), discovered Hyperion, the eighth satellite of Saturn, and an inner ring called Ring C, or the Crepe Ring. While W.C. Bond was a young clockmaker in Boston, he spent his free time in the amateur observatory he built in part of his home. In 1815 he was sent by Harvard College to Europe to visit existing observatories and gather data preliminary to the building of an observatory at Harvard. In 1839 the observatory was founded. He supervised its construction, then became its first director. Together with his son he developed the chronograph for automatically recording the position of stars. They also took some of the first recognizable photographs of celestial objects.*TIS

1864 Benoît "Claudius" Crozet (December 31, 1789; Villefranche, France – January 29, 1864) was an educator and civil engineer.
After serving in the French military, in 1816, he immigrated to the United States. He taught at the U.S. Military Academy at West Point, New York, and helped found the Virginia Military Institute at Lexington, Virginia. He was Principal Engineer for the Virginia Board of Public Works and oversaw the planning and construction of canals, turnpikes, bridges and railroads in Virginia, including the area which is now West Virginia. He became widely known as the "Pathfinder of the Blue Ridge."
On June 7, 1816, in Paris, Crozet married Agathe Decamp.
Late in fall of 1816, Crozet and his bride headed for the United States. Almost immediately after arriving, Crozet began work as a professor of engineering at the U.S. Military Academy at West Point, New York.
While at West Point, Crozet is credited by some as being the first to use the chalkboard as an instructional tool. He also designed several of the buildings at West Point. Thomas Jefferson referred to Claudius Crozet as "by far the best mathematician in the United States." He also published A Treatise on Descriptive Geometry while at West Point, a copy of which was sent to Jefferson. Jefferson's response on Nov 23, 1821 began, "I thank you, Sir, for your kind attention in sending me a copy of your valuable treatise on Descriptive geometry." He continued the messsage with praise for the work, and the instructor both. The dining hall at the Virginia Military Institute is named in his honor. It has been affectionately nicknamed "Club Crozet" by the Cadets. * Wik & Natl. Archives

1905 Robert Tucker (26 April 1832 in Walworth, Surrey, England - 29 Jan 1905 in Worthing, England) A major mathematical contribution made by Tucker was his work as editor of William Kingdon Clifford's papers. Fifty-seven of Clifford's papers were collected and edited by Tucker and published in 1882 as Mathematical Papers. Tucker also wrote many biographies including those of Gauss, Sylvester, Chasles, Spottiswoode, and Hirst, all of which appeared in Nature. But, like a number of schoolmaster's at this time, he also made a contribution to research in geometry. He wrote over 40 research papers which were published in leading journals. These papers, although sometimes not of the highest quality, do contain a number of interesting ideas. Hill specially singles out for special mention his work on the Triplicate-Ratio Circle, the group of circles sometimes known as Tucker Circles, and the Harmonic Quadrilateral. *SAU

1984 John Macnaghten Whittaker I(7 March 1905 in Cambridge, England - 29 Jan 1984 in Sheffield, England) was the son of Edmund Whittaker. He studied at Edinburgh University and Cambridge. After posts at Edinburgh and Cambridge he became Professor at Liverpool though his tenure was interrupted by service in World War II. He left Liverpool to become Vice-Chancellor of Sheffield University. He worked in Quantum Mechanics and Complex Analysis. *SAU

1999 Viktor Aleksandrovich Gorbunov (17 Feb 1950 in Russia - 29 Jan 1999 in Novosibirsk, Russia) He published his first paper in 1973 being a joint work with A I Budkin entitled Implicative classes of algebras (Russian). The implicative class of algebras is a generalisation of quasivarieties. The structural characteristics of the implicative class are studied in this paper. A second join paper with Budkin On the theory of quasivarieties of algebraic systems (Russian) appeared in 1975. In the same year he published Filters of lattices of quasivarieties of algebraic systems (Russian), this time written with V P Belkin. In fact he had written six papers before his doctoral thesis On the Theory of Quasivarieties of Algebraic Systems was submitted. He received the degree in 1978. Gorbunov continued working at Novosibirsk State University, being promoted to professor. He also worked as a researcher in the Mathematics Institute of the Siberian Branch of the Russian Academy of Sciences. *SAU


Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Wednesday, 28 January 2015

On This Day in Math - January 28



Mathematical discoveries, like springtime violets in the woods, have their season which no human can hasten or retard.
~Janos Bolyai

The 28th day of the year; 28 is the second perfect number and the last year day that will be perfect; the sum of its proper factors. 28 = 1+2+4+7+14. Like all the perfect numbers after 6, it is the sum of the cubes of consecutive odd numbers, \(28=1^3 + 3^3 \)

EVENTS
1699 Leibniz becomes the first elected foreign member of the French Academy. *VFR Huygens was a member at the origin.(1666)

1790/91 imprimatur of An Essay on the Usefulness of Mathematical Learning by John Arbuthnot. He pointed out that mathematics was not on the syllabus of a single English grammar school. It was present by this time in most of Europe. Clavius introduced the mathematical sciences into the school and university curricula in the Catholic countries of Europe in the 17th century and Philipp Melanchthon had earlier performed the same for the mainland protestant countries in the 16th century. *RMAT

1902 "It is proposed to found in the city of Washington, an institution which...shall in the broadest and most liberal manner encourage investigation, research, and discovery [and] show the application of knowledge to the improvement of mankind..." — Andrew Carnegie, January 28, 1902
Established to support scientific research, today the Carnegie Institute of Washington directs its efforts in six main areas: plant molecular biology at the Department of Plant Biology (Stanford, California), developmental biology at the Department of Embryology (Baltimore, Maryland), global ecology at the Department of Global Ecology (Stanford, CA), Earth science, materials science, and astrobiology at the Geophysical Laboratory (Washington, DC); Earth and planetary sciences as well as astronomy at the Department of Terrestrial Magnetism (Washington, DC), and (at the Observatories of the Carnegie Institution of Washington (OCIW; Pasadena, CA and Las Campanas, Chile)).*Wik

1947 The patent request of R. T. James "Slinky" was approved. The name was thought up by his wife. *Priceonomics

1977 According to the Guinness Book of World Records, the most freakish rise in temperature ever recorded was on this date in Spearfish, South Dakota. At 7:30 a.m. it was −4 degrees Fahrenheit; at 7:32 a.m. it was +45 degrees Fahrenheit. What was the average rate of change in temperature per minute? [NCTM Sourcebook of Applications of School Mathematics, p. 125] *VFR
Some other temp changes from around the net show:
1972 The greatest temperature change in 24 hours occurred in Loma, MT. on January 15. The temperature rose exactly 103 degrees, from -54 degrees Fahrenheit to 49 degrees. This is the world record for a 24—hour temperature change.
1911 Fastest temperature drop: 27.2 °C (49 °F) in 15 minutes on Jan 10 in Rapid City, South Dakota,

1986 The Space Shuttle Challenger (mission STS-51-L) broke apart 73 seconds into its flight, leading to the deaths of its seven crew members. One of them was Christa McAuliffe, the first member of the Teacher in Space Project and the (planned) first female teacher in space. Media coverage of the accident was extensive: one study reported that 85 percent of Americans surveyed had heard the news within an hour of the accident. The Challenger disaster has been used as a case study in many discussions of engineering safety and workplace ethics. *Wik


BIRTHS
1540 Ludolph van Ceulen, a German mathematician who is famed for his calculation of π to 35 places. In Germany π used to be called the Ludolphine number. Because van Ceulen could not read Greek, Jan Cornets de Groot, the burgomaster of Delft and father of the jurist, scholar, statesman and diplomat, Hugo Grotius​, translated Archimedes' approximation to π for Van Ceulen. This proved a significant point in Van Ceulen's life for he spent the rest of his life obtaining better approximations to π using Archimedes' method with regular polygons with many sides.*SAU He has Pi on his memorial stone.

1608 Giovanni Alfonso Borelli (28 Jan 1608; 31 Dec 1679) Italian mathematician, physiologist and physicist sometimes called “father of biomechanics.” He was the first to apply the laws of mechanics to the muscular action of the human body. In De motu animalium (Concerning Animal Motion, 1680), he correctly described the skeleton and muscles as a system of levers, and explained the mechanism of bird flight. He calculated the forces required for equilibrium in various joints of the body well before the mechanics of Isaac Newton. In 1649, he published a work on malignant fevers. He repudiated astrological causes of diseases and believed in chemical cures. In 1658, he published Euclidus restitutus. He made anatomical dissections, drew a diver's rebreather, investiged volcanoes, was first to suggest a parabolic path for comets, and considered Jupiter had an attractive influence on its moons.*TIS

1611 Johannes Hevelius (28 Jan 1611; 28 Jan 1687) German astronomer, who studying in Leiden and established his own observatory on the rooftops of several houses. From four years' telescopic study of the Moon, using telescopes of long focal power, Hevelius compiled Selenographia ("Pictures of the Moon", 1647), an atlas of the Moon with some of the earliest detailed maps. A few of his names for lunar mountains (e.g., the Alps) are still in use, and a lunar crater is named for him. Hevelius is today best remembered for his use of "aerial" telescopes of enormous focal length and his rejection of telescopic sights for stellar observation and positional measurement. He catalogued 1564 stars in Prodromus Astronomiae (1690), discovered four comets, and was one of the first to observe the transit of Mercury. He died on his birthday. *TIS You can find a nice blog about Hevelius, "The last great naked eye astronomer." by the Renaissance Mathematicus.

1622 Adrien Auzout (28 January 1622 – 23 May 1691) was a French astronomer.
In 1664–1665 he made observations of comets, and argued in favor of their following elliptical or parabolic orbits. (In this he was opposed by his rival Johannes Hevelius.) Adrien was briefly a member of the Académie Royale des Sciences from 1666 to 1668, and a founding member of the French Royal Obseratory. (He may have left the academy due to a dispute.) He was elected a Fellow of the Royal Society of London in 1666. He then left for Italy and spent the next 20 years in that region, finally dying in Rome in 1691. Little is known about his activities during this last period.
Auzout made contributions in telescope observations, including perfecting the use of the micrometer. He made many observations with large aerial telescopes and he is noted for briefly considering the construction of a huge aerial telescope 1,000 feet in length that he would use to observe animals on the Moon. In 1647 he performed an experiment that demonstrated the role of air pressure in function of the mercury barometer. In 1667–68, Adrien and Jean Picard attached a telescopic sight to a 38-inch quadrant, and used it to accurately determine positions on the Earth. The crater Auzout on the Moon is named after him. *Wik

1701 Charles Marie de La Condamine (28 January 1701 – 13 February 1774) was a French explorer, geographer, and mathematician. He spent ten years in present-day Ecuador measuring the length of a degree latitude at the equator and preparing the first map of the Amazon region based on astronomical observations. *Wik

1794 Isidore Auguste Marie François Xavier Comte (28 January 1794 – 21 September 1859), better known as Auguste Comte (French: [oɡyst kɔ̃t]), was a French philosopher. He was a founder of the discipline of sociology and of the doctrine of positivism. He is sometimes regarded as the first philosopher of science in the modern sense of the term.
Strongly influenced by the utopian socialist Henri Saint-Simon, Comte developed the positive philosophy in an attempt to remedy the social malaise of the French Revolution, calling for a new social doctrine based on the sciences. Comte was a major influence on 19th-century thought, influencing the work of social thinkers such as Karl Marx, John Stuart Mill, and George Eliot.[3] His concept of sociologie and social evolutionism, though now outdated, set the tone for early social theorists and anthropologists such as Harriet Martineau and Herbert Spencer, evolving into modern academic sociology presented by Émile Durkheim as practical and objective social research.
Comte's social theories culminated in the "Religion of Humanity", which influenced the development of religious humanist and secular humanist organizations in the 19th century. Comte likewise coined the word altruisme (altruism)*Wik

1838 James Craig Watson (January 28, 1838 – November 22, 1880) was a Canadian-American astronomer born in the village of Fingal, Ontario Canada. His family relocated to Ann Arbor, Michigan in 1850.
At age 15 he was matriculated at the University of Michigan, where he studied the classical languages. He later was lectured in astronomy by professor Franz Brünnow.
He was the second director of Detroit Observatory (from 1863 to 1879), succeeding Brünnow. He wrote the textbook Theoretical Astronomy in 1868.
He discovered 22 asteroids, beginning with 79 Eurynome in 1863. One of his asteroid discoveries, 139 Juewa was made in Beijing when Watson was there to observe the 1874 transit of Venus. The name Juewa was chosen by Chinese officials (瑞華, or in modern pinyin, ruìhuá). Another was 121 Hermione in 1872, from Ann Arbor, Michigan, and this asteroid was found to have a small asteroid moon in 2002.
He was a strong believer in the existence of the planet Vulcan, a hypothetical planet closer to the Sun than Mercury, which is now known not to exist (however the existence of small Vulcanoid planetoids remains a possibility). He believed he had seen such two such planets during a July 1878 solar eclipse in Wyoming.
He died of peritonitis at the age of only 42. He had amassed a considerable amount of money through non-astronomical business activities. By bequest he established the James Craig Watson Medal, awarded every three years by the National Academy of Sciences for contributions to astronomy.
The asteroid 729 Watsonia is named in his honour, as is the lunar crater Watson. *Wik

1855 William Seward Burroughs (28 Jan 1855, 5 Sep 1898) American inventor who invented the world's first commercially viable recording adding machine and pioneer of its manufacture. He was inspired by his experience in his beginning career as a bank clerk. On 10 Jan 1885 he submitted his first patent (issued 399,116 on 21 Aug 1888) for his mechanical “calculating machine.” Burroughs co-founded the American Arithmometer Co in 1886 to develop and market the machine. The manufacture of the first machines was contracted out, and their durability was unsatisfactory. He continued to refine his design for accuracy and reliability, receiving more patents in 1892, and began selling the much-improved model for $475 each. By 1895, 284 machines had been sold, mostly to banks, and 1500 by 1900. The company later became Burroughs Corporation (1905) and eventually Unisys. *TIS

1855 Karl Friedrich Wilhelm Rohn (January 25 1855 in Schwanheim - August 4 1920 in Leipzig ) was a German mathematician working mainly in geometry.
He studied under Alexander von Brill , who led him away from an initial engineering studies for mathematics; and in 1878 he received his doctorate in Munich under Felix Klein. His doctoral was on the Kummer surface of fourth Order and its relationship with hyperelliptic functions (with Riemann surfaces of genus 2). Besides his work on the Kummer surface, and other algebraic surfaces , he also examined algebraic space curves, and there completed the classification work of Georges Halphen and Max Noether. In 1913 he was president of the German Mathematical Society. *Wik His love of geometry is also illustrated by his beautiful thread models which were especially produced to excite the curiosity of the uninitiated. Rohn constructed models of surfaces and space curves that he was studying, particularly in the early part of his career. In 1884 the Jablonowski Society proposed as prize problem asking for essays on the general surface of order 4, extending the work of Schläfli, Klein and Zeuthen on cubic surfaces; they awarded the prize to Rohn for his essay in 1886. He made important contributions to the theory of quartic surfaces, in particular of ruled quartics and quartics with a triple point.*SAU

1884 Auguste Antoine Piccard (28 January 1884 – 24 March 1962) was a Swiss physicist, inventor and explorer. Piccard and his twin brother Jean Felix were born in Basel, Switzerland. Showing an intense interest in science as a child, he attended the Swiss Federal Institute of Technology (ETH) in Zurich, and became a professor of physics in Brussels at the Free University of Brussels in 1922, the same year his son Jacques Piccard was born. He was a member of the Solvay Congress of 1922, 1924, 1927, 1930 and 1933.
In 1930, an interest in ballooning, and a curiosity about the upper atmosphere led him to design a spherical, pressurized aluminum gondola that would allow ascent to great altitude without requiring a pressure suit. Supported by the Belgian Fonds National de la Recherche Scientifique (FNRS) Piccard constructed his gondola.
An important motivation for his research in the upper atmosphere were measurements of cosmic radiation, which were supposed to give experimental evidence for the theories of Albert Einstein, whom Piccard knew from the Solvay conferences and who was a fellow alumnus of ETH.
On May 27, 1931, Auguste Piccard and Paul Kipfer took off from Augsburg, Germany, and reached a record altitude of 15,781 m (51,775 ft). (FAI Record File Number 10634) During this flight, Piccard was able to gather substantial data on the upper atmosphere, as well as measure cosmic rays. On 18 August 1932, launched from Dübendorf, Switzerland, Piccard and Max Cosyns made a second record-breaking ascent to 16,201 m (53,153 ft). (FAI Record File Number 6590) He ultimately made a total of twenty-seven balloon flights, setting a final record of 23,000 m (75,459 ft).
In the mid-1930s, Piccard's interests shifted when he realized that a modification of his high altitude balloon cockpit would allow descent into the deep ocean. By 1937, he had designed the bathyscaphe, a small steel gondola built to withstand great external pressure. Construction began, but was interrupted by the outbreak of World War II. Resuming work in 1945, he completed the bubble-shaped cockpit that maintained normal air pressure for a person inside the capsule even as the water pressure outside increased to over 46 MPa (6,700 psi). Above the heavy steel capsule, a large flotation tank was attached and filled with a low density liquid for buoyancy. Liquids are relatively incompressible and can provide buoyancy that does not change as the pressure increases. And so, the huge tank was filled with gasoline, not as a fuel, but as flotation. To make the now floating craft sink, tons of iron were attached to the float with a release mechanism to allow resurfacing. This craft was named FNRS-2 and made a number of unmanned dives in 1948 before being given to the French Navy in 1950. There, it was redesigned, and in 1954, it took a man safely down 4,176 m (13,701 ft).
Piccard was the inspiration for Professor Cuthbert Calculus in The Adventures of Tintin by Belgian cartoonist Hergé. Piccard held a teaching appointment in Brussels where Hergé spotted his unmistakable figure in the street.
Gene Roddenberry named Captain Jean-Luc Picard in Star Trek after one or both of the twin brothers Auguste and Jean Felix Piccard, and derived Jean-Luc Picard from their names. *Wik

1888 Louis Joel Mordell (28 January 1888 – 12 March 1972) was a British mathematician, known for pioneering research in number theory. He was born in Philadelphia, USA, in a Jewish family of Lithuanian extraction. He came in 1906 to Cambridge to take the scholarship examination for entrance to St John's College, and was successful in gaining a place and support.Having taken third place in the Mathematical Tripos, he began independent research into particular diophantine equations: the question of integer points on the cubic curve, and special case of what is now called a Thue equation, the Mordell equation

y2 = x2 + k.

During World War I he was involved in war work, but also produced one of his major results, proving in 1917 the multiplicative property of Ramanujan's tau-function. The proof was by means, in effect, of the Hecke operators, which had not yet been named after Erich Hecke; it was, in retrospect, one of the major advances in modular form theory, beyond its status as an odd corner of the theory of special functions.
In 1920 he took a teaching position in Manchester College of Technology, becoming the Fielden Reader in Pure Mathematics at the Victoria University of Manchester in 1922 and Professor in 1923. There he developed a third area of interest within number theory, geometry of numbers. His basic work on Mordell's theorem is from 1921/2, as is the formulation of the Mordell conjecture.
In 1945 he returned to Cambridge as a Fellow of St. John's, when elected to the Sadleirian Chair, and became Head of Department. He officially retired in 1953. It was at this time that he had his only formal research students, of whom J. W. S. Cassels was one. His idea of supervising research was said to involve the suggestion that a proof of the transcendence of the Euler–Mascheroni constant was probably worth a doctorate. *Wik

1892 Carlo Emilio Bonferroni (28 Jan 1892 in Bergamo, Italy - 18 Aug 1960 in Florence, Italy) His articles are more of a contribution to probability theory than to simultaneous statistical inference. He also had interests in the foundations of probability. He developed a strongly frequentist view of probability denying that subjectivist views can even be the subject of mathematical probability. *SAU He is best known for the Bonferroni inequalities, and gives his name to (but did not devise) the Bonferroni correction in statistics. *Wik

1903 Dame Kathleen Lonsdale (28 Jan 1903; 1 Apr 1971) British crystallographer (née Yardley) who developed several X-ray techniques for the study of crystal structure. Her experimental determination of the structure of the benzene ring by x-ray diffraction, which showed that all the ring C-C bonds were of the same length and all the internal C-C-C bond angles were 120 degrees, had an enormous impact on organic chemistry. She was the first woman to be elected (1945) to the Royal Society of London. *TIS

1911 Robert Schatten (January 28, 1911 – August 26, 1977) principal mathematical achievement was that of initiating the study of tensor products of Banach spaces. The concepts of crossnorm, associate norm, greatest crossnorm, least crossnorm, and uniform crossnorm, all either originated with him or at least first received careful study in his papers. He was mainly interested in the applications of this subject to linear transformations on Hilbert space. In this subject, the Schatten Classes perpetuate his name. Schatten had his own way of making abstract concepts memorable to his elementary classes. Who could forget what a sequence was after hearing Schatten describe a long corridor, stretching as far as the eye could see, with hooks regularly spaced on the wall and numbered 1, 2, 3, ...? "Then," Schatten would say, "I come along with a big bag of numbers over my shoulder, and hang one number on each hook." This of course was accompanied by suitable gestures for emphasis. *SAU

1924 Wilhelm Paul Albert Klingenberg (28 January 1924 Rostock, Mecklenburg, Germany – 14 October 2010 Röttgen, Bonn) was a German mathematician who worked on differential geometry and in particular on closed geodesics. One of his major achievements is the proof of the sphere theorem in joint work with Marcel Berger in 1960: The sphere theorem states that a simply connected manifold with sectional curvature between 1 and 4 is homeomorphic to the sphere. *Wik

DEATHS
1687 Johannes Hevelius (28 Jan 1611; 28 Jan 1687) German astronomer, who studying in Leiden and established his own observatory on the rooftops of several houses. From four years' telescopic study of the Moon, using telescopes of long focal power, Hevelius compiled Selenographia ("Pictures of the Moon", 1647), an atlas of the Moon with some of the earliest detailed maps. A few of his names for lunar mountains (e.g., the Alps) are still in use, and a lunar crater is named for him. Hevelius is today best remembered for his use of "aerial" telescopes of enormous focal length and his rejection of telescopic sights for stellar observation and positional measurement. He catalogued 1564 stars in Prodromus Astronomiae (1690), discovered four comets, and was one of the first to observe the transit of Mercury. He died on his birthday. *TIS

1864 Benoit Clapeyron (26 Feb 1799, 28 Jan 1864) French engineer who expressed Sadi Carnot's ideas on heat analytically, with the help of graphical representations. While investigating the operation of steam engines, Clapeyron found there was a relationship (1834) between the heat of vaporization of a fluid, its temperature and the increase in its volume upon vaporization. Made more general by Clausius, it is now known as the Clausius-Clapeyron formula. It provided the basis of the second law of thermodynamics. In engineering, Clayeyron designed and built locomotives and metal bridges. He also served on a committee investigating the construction of the Suez Canal and on a committee which considered how steam engines could be used in the navy.*TIS

1889 Joseph Émile Barbier (18 March 1839 in St Hilaire-Cottes, Pas-de-Calais, France - 28 Jan 1889 in St Genest, Loire, France)
He was offered a post at the Paris Observatory by Le Verrier and Barbier left Nice to begin work as an assistant astronomer. For a few years he applied his undoubted genius to problems of astronomy. He proved a skilled observer, a talented calculator and he used his brilliant ideas to devise a new type of thermometer. He made many contributions to astronomy while at the observatory but his talents in mathematics were also to the fore and he looked at problems in a wide range of mathematical topics in addition to his astronomy work.
As time went by, however, Barbier's behaviour became more and more peculiar. He was clearly becoming unstable and exhibited the fine line between genius and mental problems which are relatively common. He left the Paris Observatory in 1865 after only a few years of working there. He tried to join a religious order but then severed all contacts with his friends and associates. Nothing more was heard of him for the next fifteen years until he was discovered by Bertrand in an asylum in Charenton-St-Maurice in 1880.
Bertrand discovered that although Barbier was clearly unstable mentally, he was still able to make superb original contributions to mathematics. He encouraged Barbier to return to scientific writing and, although he never recovered his sanity, he wrote many excellent and original mathematical papers. Bertrand, as Secretary to the Académie des Sciences, was able to find a small source of income for Barbier from a foundation which was associated with the Académie. Barbier, although mentally unstable, was a gentle person and it was seen that, with his small income, it was possible for him to live in the community. This was arranged and Barbier spent his last few years in much more pleasant surroundings.
Barbier's early work, while at the Observatory, consists of over twenty memoirs and reports. These cover topics such as spherical geometry and spherical trigonometry. We mentioned above his work with devising a new type of thermometer and Barbier wrote on this as well as on other aspects of instruments. He also wrote on probability and calculus.
After he was encouraged to undertake research in mathematics again by Bertrand, Barbier wrote over ten articles between the years 1882 and 1887. These were entirely on mathematical topics and he made worthwhile contributions to the study of polyhedra, integral calculus and number theory. He is remembered for Barbier's theorem, nicely explained here by Alex Bogomolny.*SAU

1910 Alfredo Capelli (5 Aug 1855, Milan, Italy – 28 Jan 1910, Naples, Italy) was an Italian mathematician who discovered Capelli's identity.
Capelli graduated from the University of Rome in 1877, and moved to the University of Pavia where he worked as an assistant for Felice Casorati. In 1881 he became a professor at the University of Palermo, replacing Cesare Arzelà who had recently moved to Bologna. In 1886, he moved again to the University of Naples, where he held the chair in algebra. He remained at Naples until his death in 1910. As well as being a professor there, he was editor of the Giornale di Matematiche di Battaglini from 1894 to 1910, and was elected to the Accademia dei Lincei.*Wik

1946 Dmitrii Matveevich Sintsov (21 November 1867 – 28 January 1946) was a Russian mathematician known for his work in the theory of conic sections and non-holonomic geometry.
He took a leading role in the development of mathematics at Kharkov University, serving as chairman of the Kharkov Mathematical Society for forty years, from 1906 until his death at the age of 78.*Wik

1954 Ernest Benjamin Esclangon (March 17, 1876 – January 28, 1954) was a French astronomer and mathematician.
Born in Mison, Alpes-de-Haute-Provence, in 1895 he started to study mathematics at the École Normale Supérieure, graduating in 1898. Looking for some means of financial support while he completed his doctorate on quasi-periodic functions, he took a post at the Bordeaux Observatory, teaching some mathematics at the university.
During World War I, he worked on ballistics and developed a novel method for precisely locating enemy artillery. When a gun is fired, it initiates a spherical shock wave but the projectile also generates a conical wave. By using the sound of distant guns to compare the two waves, Escaglon was able to make accurate predictions of gun locations.
After the armistice, Esclangon became director of the Strasbourg Observatory and professor of astronomy at the university the following year. In 1929, he was appointed director of the Paris Observatory and of the International Time Bureau, and elected to the Bureau des Longitudes in 1932. In 1933, he initiated the talking clock telephone service in France. He was elected to the Académie des Sciences in 1939.
Serving as director of the Paris Observatory throughout World War II and the German occupation of Paris, he retired in 1944. He died in Eyrenville, France.
The binary asteroid 1509 Esclangona and the lunar crater Esclangon are named after him.*Wik

1988 (Emil) Klaus (Julius) Fuchs (29 Dec 1911; 28 Jan 1988) was a German-born physicist who was convicted as a spy on 1 Mar 1950, for passing nuclear research secrets to Russia. He fled from Nazi Germany to Britain. He was interned on the outbreak of WW II, but Prof. Max Born intervened on his behalf. Fuchs was released in 1942, naturalized in 1942 and joined the British atomic bomb research project. From 1943 he worked on the atom bomb with the Manhattan Project at Los Alamos, U.S. By 1945, he was sending secrets to Russia. In 1946, he became head of theoretical physics at Harwell, UK. He was caught, confessed, tried, imprisoned for nine of a 14 year sentence, released on 23 Jun 1959, and moved to East Germany and resumed nuclear research until 1979. *TIS

1993 Helen Battles (Sawyer) Hogg (1 Aug 1905, 28 Jan 1993) was a Canadian astronomer who located, cataloged and measured the distances to variable stars in globular clusters (stars with cyclical changes of brightness found within huge, dense conglomerations of stars located in the outer halo of the Milky Way galaxy). Her interest in astronomy was spurred when she witnessed a total eclipse of the sun in 1925. Alongside her career work, she was also foremost in Canada in popularizing astronomy, about which she wrote a column in the Toronto Star for thirty years. She was the first woman to become president of the Royal Canadian Institute. In 1989, the observatory at the National Museum of Science and Technology in Ottawa was dedicated in her name.*TIS

2009 William Moser (5 Sep 1927;28 Jan 2009) My mathematical interests are: presentations for finite groups; combinatorial enumerations (e.g., counting restricted permutations and combinations); problems in discrete and combinatorial geometry. *From his page at McGill Univ.
In March 2003 Moser was interviewed by Siobhan Roberts who was working on her major work on Coxeter King of Infinite space. He recounted the following story

"Donald made many great contributions to mathematics. I made one great contribution," recounted Moser. Moser's opportunity came at the end of Coxeter's 1955 summer of roving lectures, after his session in Stillwater, at Oklahoma State University. Moser drove down to meet Coxeter and serve as his assistant, taking detailed notes of the well-polished lectures. "At the end of the summer we drove north, to civilisation," said Moser wryly. "We were in my car and Donald asked me if he could drive. It was a new car. Indeed it was the first car I had ever purchased, a green 1955 Plymouth 2-door. I paid $2,000 for it and drove it to Oklahoma. But I agreed. I was surprised to see that he was an aggressive driver. At one point he was trying to pass a car while driving up a hill on a 2-lane highway. I immediately perceived that this was not a prudent thing to do. He tried to coax the car to go faster but it wouldn't respond. At the last moment I shrieked at him, 'Pull back, pull back'. I was probably his only student to shriek at him. He began to pull back and at that moment a truck came over the hill. He managed to get back in the right lane just in time. I HAD SAVED HIS LIFE! And mine. But saving Coxeter's life was my greatest contribution to mathematics." *SAU

2012 Roman Juszkiewicz (born 8 August 1952, died 28 January 2012) is a Polish astrophysicist whose work is concerned with fundamental issues of cosmology.
Juszkiewicz's scientific interests include the theory of gravitational instability, origins of the large-scale structure, microwave background radiation and Big Bang nucleosynthesis. He wrote nearly one hundred research papers, mostly in the area of cosmology. Calculated results based on observed motions of pairs of galaxies, obtained in 2000 by Roman Juszkiewicz and the group led by him, aimed at estimating the amount of dark matter in the Universe, were confirmed by the recently published data from the South Pole's ACBAR detector. *Wik


Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Tuesday, 27 January 2015

On This Day in Math - January 27

Gallleo's Notbook with observation of Neptune?
*Starship Asterisk web site

It troubles me that we are so easily pressured by purveyors of technology into permitting so-called ‘progress’ to alter our lives without attempting to control it—as if technology were an irrepressible force of nature to which we must meekly submit.
~Hyman G. Rickover

The 27th day of the year; 273 = 19,683 which has a digit sum of 27. There is no larger number for which the sum of the digits of the cube is equal to the number .


EVENTS
1520 Off the Patagonian coast near a small peninsula called Punta Tombo, during Ferdinand Magellan’s voyage around the world, a crewman spied strange creatures swimming in the bay. He called them flightless geese, but scientists believe they were penguins of a sort classified as Spheniscus magellanicus.*VFR

1613 Galileo observed Neptune, but did not recognize it as a planet. Galileo's drawings show that he first observed Neptune on December 28, 1612, and again on January 27, 1613. On both occasions, Galileo mistook Neptune for a fixed star when it appeared very close—in conjunction—to Jupiter in the night sky; hence, he is not credited with Neptune's discovery. (The official discovery is usually cited as September 23, 1846, Neptune was discovered within 1° of where Le Verrier had predicted it to be.) During the period of his first observation in December 1612, Neptune was stationary in the sky because it had just turned retrograde that very day. This apparent backward motion is created when the orbit of the Earth takes it past an outer planet. Since Neptune was only beginning its yearly retrograde cycle, the motion of the planet was far too slight to be detected with Galileo's small telescope.*Wik A new theory says he may have known it was a planet. Professor David Jamieson, Head of the School of Physics at University of Melbourne is investigating the notebooks of Galileo from 400 years ago and believes that buried in the notations is the evidence that he discovered a new planet that we now know as Neptune. Galileo was observing the moons of Jupiter in the years 1612 and 1613 and recorded his observations in his notebooks. Over several nights he also recorded the position of a nearby star which does not appear in any modern star catalogue. "It has been known for several decades that this unknown star was actually the planet Neptune. Computer simulations show the precision of his observations revealing that Neptune would have looked just like a faint star almost exactly where Galileo observed it," Professor Jamieson says.
In one of his notebooks he noticed the movement of a background star (Neptune) on January 28 and a dot (in Neptune's position) drawn in a different ink suggests that he found it on an earlier sketch, drawn on the night of January 6, suggesting a systematic search among his earlier observations. However, any notification about the discovery hasn't been found. *onOrbit.com

1690 Newton returns to Cambridge after spending nearly a year in London serving as an MP from Cambridge University to the Convention Parliament. Declaring the throne vacant after James II escaped to France, the convention offered the throne to William and Mary jointly.According to some reports, his only comments were to complain about a cold draft in the chamber and request that the window be closed

1921, Albert Einstein suggested the possibility of measuring the universe, which startled the audience, with his address Geometry and Expansion given at the Prussian Academy of Sciences in Berlin. Applying certain results of the relativity theory, he came to the conclusion that if the real velocities of the stars (as could be actually measured) were less than the calculated velocities, then it would prove that real gravitations' great distances were smaller than the gravitational distances demanded by the law of Newton. From such divergence, the finiteness of the universe could be proved indirectly, and it would even permit the estimation of its size. *TIS

1994 Silicon Graphics Inc. co-founder Jim Clark leaves the company to start Mosaic Communications, the operation that later became Netscape Communications Corp. With Netscape cofounder Marc Andreesen, Clark helped popularize the World Wide Web by distributing the company's browser for free.*CHM

2012 An asteroid, 2012 BX34, passed within about 60,000km of Earth - less than a fifth of the distance to the Moon.The asteroid's path made it the closest space-rock to pass by the Earth since June 2011. The asteroid, estimated to be about 11m (36ft) in diameter, was first detected on Jan 25.*BBC website


BIRTHS
1701 Charles-Marie de La Condamine (27 Jan 1701; 4 Feb 1774) French naturalist and mathematician who became particularly interested in geodesy (earth measurement). He was put in charge by the King of France of an expedition to Equador to measure a meridional arc at the equator (1735-43). It was wished to determine whether the Earth was either flattened or elongated at its poles. He then accomplished the first scientific exploration of the Amazon River (1743) on a raft, studying the region, and brought the drug curare to Europe. He also worked on establishment of a universal unit of length, and is credited with developing the idea of vaccination against smallpox, later perfected by Edward Jenner. However, he was almost constantly ill and died in 1773, deaf and completely paralyzed. *TIS

1715 Caspar (or Kaspar) Neumann (14 September 1648 – 27 January 1715) was a German professor and clergyman from Breslau with a special interest in mortality rates.
He first did an apprenticeship as a pharmacist. He finished his higher school education at Breslau's Maria-Magdalen grammar school. In 1667 he became a student of theology at the university of Jena, and on Nov. 30, 1673 was ordained as a priest, having been requested as a traveling chaplain for Prince Christian, the son of Ernest I, Duke of Saxe-Gotha. On his return home, following a two-year journey through west­ern Ger­ma­ny, Switz­er­land, north­ern It­a­ly, and south­ern France, he became a court-chaplain at Altenburg, and married the daughter of J. J. Rabe, physician in ordinary to the prince of Saxe-Friedenstein. In 1678 he was made the deacon of St. Maria-Magdalen in Breslau and became pastor in 1689. *Wik He was a student of Erhard Weigel

1829 Isaac Roberts (27 Jan 1829; 17 Jul 1904) British astronomer who was a pioneer in photography of nebulae. In 1885 he had built an observatory with a 20 inch reflector. Using this instrument Roberts was to make considerable progress in the newly developing science of Astro-photography. He photographed numerous celestial objects including Orion Nebula on 15 Jan 1986 (90 minute exposure) and Pleiades. Undoubtedly his finest work was a photograph showing the spiral structure of the Great Nebula in Andromeda, M31 on 29 Dec 1888. In addition to his contribution to astro-photography, Roberts also devised a machine to be used to engrave stellar positions on copper plates, known as the Stellar Pantograver. He was also a geologist of some considerable note.*TIS

1831 Charles Lutwidge Dodgson, pen-name Lewis Carroll (27 Jan 1832, 14 Jan 1898), was an English logician, mathematician, photographer, and novelist, remembered for Alice's Adventures in Wonderland (1865) and its sequel. After graduating from Christ Church College, Oxford in 1854, Dodgson remained there, lecturing on mathematics and writing treatises until 1881. As a mathematician, Dodgson was conservative. He was the author of a fair number of mathematics books, for instance A syllabus of plane algebraical geometry (1860). His mathematics books have not proved of enduring importance except Euclid and his modern rivals (1879) which is of historical interest. As a logician, he was more interested in logic as a game than as an instrument for testing reason.*TIS (I once read that if Dodgson had not written "Alice", he would be remembered today for his photography, and if he had not done either of those, then, if he was remembered at all, it would be for his logic book. One of my favorite Lewis Carroll stories is about his gift of a book to Queen Victoria. Here is the version as it is told on the Mathworld page):
Several accounts state that Lewis Carroll (Charles Dodgson ) sent Queen Victoria a copy of one of his mathematical works, in one account, An Elementary Treatise on Determinants. Heath (1974) states, "A well-known story tells how Queen Victoria, charmed by Alice in Wonderland, expressed a desire to receive the author's next work, and was presented, in due course, with a loyally inscribed copy of An Elementary Treatise on Determinants," while Gattegno (1974) asserts "Queen Victoria, having enjoyed Alice so much, made known her wish to receive the author's other books, and was sent one of Dodgson's mathematical works." However, in Symbolic Logic (1896), Carroll stated, "I take this opportunity of giving what publicity I can to my contradiction of a silly story, which has been going the round of the papers, about my having presented certain books to Her Majesty the Queen. It is so constantly repeated, and is such absolute fiction, that I think it worth while to state, once for all, that it is utterly false in every particular: nothing even resembling it has occurred" (Mikkelson and Mikkelson)
And then, I learned that "Lewis Carroll coined 'chortle' in Through the Looking-Glass, in 1871." @OEDonline, Twitter

1870 Jules-Émile Verschaffelt (27 January 1870, Ghent – 22 December 1955) was a Belgian physicist. He worked at Kamerlingh Onnes’s laboratory in Leiden from 1894 to 1906 and once again from 1914 to 1923. From 1906 to 1914 he worked at the Vrije Universiteit Brussel and from 1923 to 1940 at the Ghent University. *Wik

1885 Franciszek Leja (January 27, 1885 in Grodzisko Górne near Przeworsk – October 11, 1979 in Kraków, Poland) Polish mathematician who greatly influenced Polish Mathematics in the period between the two World Wars.
He was born to a poor peasant family in the southeastern Poland. After graduating from the University of Lwów he was a teacher of mathematics and physics in high schools from 1910 until 1923, among others in Kraków. From 1924 until 1926 he was a professor at the Warsaw University of Technology and from 1936 until 1960 in the Jagiellonian University.
During the Second World War he lectured on the underground universities in Łańcut and Lezajsk. But after the German invasion of Poland in 1939 life there became extremely difficult. There was a strategy by the Germans to wipe out the intellectual life of Poland. To achieve this Germans sent many academics to concentration camps and murdered others. In one of such actions he was sent to the Sachsenhausen concentration camp which he fortunately survived.
Since 1948 he worked for the Institute of Mathematics of the Polish Academy of Sciences. He was a co-founder of the Polish Mathematics Society in 1919 and from 1963 until 1965 the chairman. Since 1931 he was a member of the Warsaw Science Society (TNW).
His main scientific interests concentrated on analytic functions, in particular the method of extremal points and transfinite diameters. *Wik

1900 Hyman George Rickover (27 Jan 1900; 8 Jul 1986) was a Polish-American naval officer who immigrated to the US (1906) and graduated from the Naval Academy in 1922. He eventually became an Admiral. He is known as the “Father of the Nuclear Navy” for his leadership to build the atomic-powered submarine, USS Nautilus (1954). He served on active duty with the United States Navy for more than 63 years, receiving exemptions from the mandatory retirement age due to his critical service in the building of the United States Navy's nuclear surface and submarine force. *TIS

1903 Howard Percy Robertson (27 Jan 1903 in Hoquiam, Washington, USA - 26 Aug 1961) made outstanding contributions to differential geometry, quantum theory, the theory of general relativity, and cosmology. He was interested in the foundations of physical theories, differential geometry, the theory of continuous groups, and group representations. He was particularly interested in the application of the latter three subjects to physical problems.
His contributions to differential geometry came in papers such as: The absolute differential calculus of a non-Pythagorean non-Riemannian space (1924); Transformation of Einstein space (1925); Dynamical space-times which contain a conformal Euclidean 3-space (1927); Note on projective coordinates (1928); (with H Weyl) On a problem in the theory of groups arising in the foundations of differential geometry (1929); Hypertensors (1930); and Groups of motion in space admitting absolute parallelism (1932). *SAU

1936 Samuel C.C. Ting(27 Jan 1936, ) Samuel Chao Chung Ting is an American physicist who shared, with Burton Richter, the Nobel Prize for Physics in 1976 for his discovery of a new subatomic particle, the J/psi particle.*TIS



DEATHS
1667 Gregorius Saint Vincent (8 Sept 1584 in Bruges, Belgium - 27 Jan 1667 in Ghent, Belgium). His Opus geometricum (1647) contains the most beautiful frontispiece of any mathematics text. In this work, Gregorius was the first to develop the theory of the geometric series and also the first to show that the area under a hyperbola is a logarithm. *VFR (in the frontispiece he claims to have squared the circle) The engraved frontispiece shows sunrays inscribed in a square frame being arranged by graceful angels to produce a circle on the ground: 'mutat quadrata rotundis'. There was uneasiness in the learned world because no one in that world still believed that under the specific Greek rules the quadrature of a circle could possibly be effected, and few relished the thought of trying to locate an error, or errors, in 1200 pages of text. Four years later, in 1651, Christiaan Huygens found a serious defect in the last book of 'Opus geometricum', namely in Proposition 39 of Book X, on page 1121. This gave the book a bad reputation.*SAU
Bob Mrotek wrote to point out that "The picture shows an angel holding a square frame and the light ray that passes through it forms a circle on the ground. This is ALWAYS the case no matter what the shape of the hole that the light passes through as long as there is enough focal length between the hole (depending on its size) and the ground. When you walk in the woods you will notice that the light passing through the odd shaped spaces between the leaves forms perfect circles on the ground. This is the camera obscura effect and most people never realize it."

1823 Charles Hutton (14 Aug 1737 in Newcastle-upon-Tyne, England - 27 Jan 1823 in London, England) was an English mathematician who wrote arithmetic textbooks. A textbook he wrote while at the Royal Military Academy, Woolwich was later adopted as the first math text by the USMA in West Point, NY and served as the principal math text for two decades. *Wik

1860 János Bolyai (15 Dec 1802; 27 Jan 1860) Hungarian mathematician and one of the founders of non-Euclidean geometry - geometry that does not include Euclid's axiom that only one line can be drawn parallel to a given line through a point not on the given line. His father, Farkas Bolyai, had devoted his life to trying to prove Euclid's famous parallel postulate. Despite his father's warnings that it would ruin his health and peace of mind, János followed in working on this axiom until, in about 1820, he came to the conclusion that it could not be proved. He went on to develop a consistent geometry (published 1882) in which the parallel postulate is not used, thus establishing the independence of this axiom from the others. He also did valuable work in the theory of complex numbers. *TIS
He once accepted a challenge to duel thirteen of his fellow cavalry officers on the condition that after each duel he would serenade the loser with a piece on his violin. He won all thirteen duels.
János had his own funeral card printed with a blank date and built his own coffin. Still alive six years later, he printed a new funeral card to replace the unused one. In his will he left instructions that an apple tree be planted on his grave in remembrance of Eve, Paris, and Newton. In 1911 his ashes were exhumed and laid into his father’s tomb. *robertnowlan

1860 Sir Thomas Makdougall Brisbane, Baronet (23 Jul 1773, 27 Jan 1860) British soldier and astronomical observer for whom the city of Brisbane, Australia, is named. He was Governor of NSW (1821-25). Mainly remembered as a patron of science, he built an astronomical observatory at Parramatta, Australia, made the first extensive observations of the southern stars since Lacaille in (1751-52) and built a combined observatory and magnetic station at Makerstoun, Roxburghshire, Scotland. He also conducted (largely unsuccessful) experiments in growing Virginian tobacco, Georgian cotton, Brazilian coffee and New Zealand flax.*TIS

1895 James Cockle (14 Jan 1819 in Great Oakley, Essex, England - 27 Jan 1895 in Bayswater, London, England) Cockle was remarkably productive as a mathematician publishing over 100 papers. He wrote papers on both pure and applied mathematics, as well as on the history of science. On the former topic he wrote on fluid dynamics and magnetism. Most of his work, however, was in pure mathematics where he studied algebra, the theory of equations, and differential equations. He had a collaborator on mathematical work, a Congregationalist minister named Robert Harley. *SAU

1947 Alexander Brown (5 May 1877 in Dalkeith, near Edinburgh, Scotland - 27 Jan 1947 in Cape Town, South Africa) In 1903 Brown was appointed as Professor of Applied Mathematics in the South African College. In 1911 he married Mary Graham; they had a son and a daughter. He remained in Cape Town until his death in 1947, but his status changed in 1918 when the South African College became the University of Cape Town.
He was a member of the Edinburgh Mathematical Society, joining the Society in December 1898. He contributed papers to meetings of the Society such as On the Ratio of Incommensurables in Geometry to the meeting on Friday 9 June 1905 and Relation between the distances of a point from three vertices of a regular polygon, at the meeting on Friday 11 June 1909, communicated by D C McIntosh.
Brown was elected a Fellow of the Royal Society of South Africa in 1918, was on its Council from 1931 to 1935 and again in 1941, was its Honorary Treasurer from 1936 to 1940, and President from 1942 to 1945. Alexander Brown was elected to the Royal Society of Edinburgh on 20 May 1907. *SAU

1965 Philip Franklin (October 5, 1898 in New York — January 27, 1965 in Belmont, Massachusetts) was an American mathematician and professor whose work was primarily focused in analysis.
His dissertation, The Four Color Problem, was supervised by Oswald Veblen. After teaching for one year at Princeton and two years at Harvard (as the Benjamin Peirce Instructor), Franklin joined the MIT Department of Mathematics, where he stayed until his 1964 retirement.
In 1922, Franklin gave the first proof that all planar graphs with at most 25 vertices can be four-colored.
In 1928, Franklin gave the first description of an orthonormal basis for L²([0,1]) consisting of continuous functions (now known as "Franklin's system").
In 1934, Franklin published a counterexample to the Heawood conjecture, this 12-vertex cubic graph is now known as the Franklin graph.
He was married to Norbert Wiener's sister Constance. *Wik

1972 Richard Courant (8 Jan 1888, 27 Jan 1972) German-American mathematician who, upon joining the faculty of New York University in 1934, began to build the nucleus of a small research group based on the Göttingen model he had experienced as a student of David Hilbert in Germany. Courant's published papers were in variational problems, finite difference methods, minimal surfaces, and partial differential equations. He encouraged the publication of mathematical texts and high quality monographs, such as Methods of Mathematical Physics by Courant and Hilbert. His leadership was commemorated in 1964 when the institute he founded was named the Courant Institute of Mathematical Sciences at New York University *TIS He died at age 84 of a stroke in New Rochelle, NY. Today it is named after him: The Courant Institute. *VFR

1995 Raphael Mitchel Robinson (November 2, 1911 – January 27, 1995) was an American mathematician.
In 1941, Robinson married his former student Julia Bowman. She became his Berkeley colleague and the first woman president of the American Mathematical Society.
He worked on mathematical logic, set theory, geometry, number theory, and combinatorics. Robinson (1937) set out a simpler and more conventional version of John Von Neumann's 1923 axiomatic set theory. Soon after Alfred Tarski joined Berkeley's mathematics department in 1942, Robinson began to do major work on the foundations of mathematics, building on Tarski's concept of "essential undecidability," by proving a number of mathematical theories undecidable. Robinson (1950) proved that an essentially undecidable theory need not have an infinite number of axioms by coming up with a counterexample Robinson's work on undecidability culminated in his coauthoring Tarski et al. (1953), which established, among other things, the undecidability of group theory, lattice theory, abstract projective geometry, and closure algebras.
Robinson worked in number theory, even employing very early computers to obtain results. For example, he coded the Lucas-Lehmer primality test to determine whether 2n − 1 was prime for all prime n less than 2304 on a SWAC. In 1952, he showed that these Mersenne numbers were all composite except for 17 values of n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281. He discovered the last 5 of these Mersenne primes, the largest ones known at the time.
Robinson wrote several papers on tilings of the plane, in particular a clear and remarkable 1971 paper "Undecidability and nonperiodicity for tilings of the plane" simplifying what had been a tangled theory.*Wik

2001 Robert Alexander Rankin (27 Oct 1915 in Garlieston, Wigtownshire, Scotland - 27 Jan 2001 in Glasgow, Scotland) At Cambridge Rankin began to undertake research in number theory on the difference between two successive primes which won him the Rayleigh Prize in 1939. He published four papers on The difference between consecutive prime numbers between this time and 1950. in 1939 he began to work with G H Hardy on the results of Ramanujan. Although Ramanujan had died nearly twenty years earlier, he had left a number of unpublished notebooks filled with theorems that Hardy and other mathematicians continued to study.
After an interruption during WWII, Rankin wrote over 100 research papers, mostly on the theory of numbers and the theory of functions. He wrote The modular group and its subgroups published in 1969 and Modular forms and functions which was published in 1977. The former of these is described by Rankin himself in the Preface, "This short course of lectures was given at the Ramanujan Institute for Advanced Study in Mathematics, in the University of Madras, in September 1968. The object of the course was to study the modular group and some of its subgroups, with help of algebraic rather than analytic or topological methods." He made a number of remarkable contributions to the theory of numbers have played a major part in the modern development of the topic. *SAU

2008 Irene Anne Stegun (February 9, 1919 – January 27, 2008) was a mathematician at the National Bureau of Standards who, with Milton Abramowitz, edited a classic book of mathematical tables called A Handbook of Mathematical Functions, widely known as Abramowitz and Stegun. When Abramowitz died of a heart attack in 1958, Stegun took over management of the project and finished the work by 1964, working under the direction of the NBS Chief of Numerical Analysis Philip J. Davis, who was also a contributor to the book. *Wik

2015 Charles Hard Townes (July 28, 1915 – January 27, 2015) was an American Nobel Prize-winning physicist and educator. Townes was known for his work on the theory and application of the maser, on which he got the fundamental patent, and other work in quantum electronics connected with both maser and laser devices. He shared the Nobel Prize in Physics in 1964 with Nikolay Basov and Alexander Prokhorov.
In a career that spanned six decades, Dr. Townes developed radar bombing systems and navigation devices during World War II, advised presidents and government commissions on lunar landings and the MX missile system, verified Einstein’s cosmological theories, discovered ammonia molecules at the center of the Milky Way, and created an atomic clock that measured time to within one second in 300 years. He died at the age of 99 in Berkeley, California*Wik *NY Times
Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell

Monday, 26 January 2015

On This Day in Math - January 26



As for everything else, so for a mathematical theory: beauty can be perceived but not explained.
~Arthur Cayley


The 26th day of the year; 26 is the smallest non-palindrome with a palindromic square. (676). (What's the next smallest?)
Fermat's sandwich theorem states that 26 is the only number sandwiched between a perfect square number \(5^2=25\) and a perfect cubic number \(3^3 = 27\). According to Singh (1997), after challenging other mathematicians to establish this result while not revealing his own proof, Fermat took particular delight in taunting the English mathematicians Wallis and Digby with their inability to prove the result.*Wolfram Mathworld

When the single digits are raised to 26th power, only 526 contains all ten digits.  526 = 1490116119384765625  (As numbers get very large, counter intuitively, numbers that do not contain all the digits become very rare)

EVENTS
1126 Adelard of Bath translates Muhammad ibn Mˆusˆa al-Khwˆarizmˆı’s Astronomical Tables into Latin. *VFR

1678 Phillipe de LaHire nominated to the Academy of Sciences. This geometer was so adept at synthetic techniques that he, together with Rolle, was hostile to the infinitesimal calculus when discussions of its value were raised in the Academy beginning in 1701*VFR (Kids studying the theorem bearing his name in intro calc seem fascinated to learn that Rolle was opposed to Calculus.)

In 1697, Isaac Newton received and solved Jean Bernoulli's brachistochrone problem. The swiss mathematician Bernouilli had challenged his colleagues to solve it within six months. Newton not only solved the problem before going to bed that same night, but in doing so, invented a new branch of mathematics called the calculus of variations. He had resolved the issue of specifying the curve connecting two points displayed from each other laterally, along which a body, acted upon only by gravity, would fall in the shortest time. Newton, age 55, sent the solution to be published, at his request, anonymously. But the brilliant originality of the work betrayed his identity, for when Bernoulli saw the solution he commented, "We recognize the lion by his claw." *TIS

1738 Frederick the Great wrote Voltaire of his plan of study, “to take up again philosophy, history, poetry, music. As for mathematics, I confess to you that I dislike it; it dries up the mind. We Germans have it only too dry; it is a sterile field which must be cultivated and watered constantly, that it may produce”. Nonetheless, Frederick supported Euler at the Berlin Academy from 1741 to 1766.*VFR

1750 Danial Bernoulli writes to Euler to complain that d'Alembert's work on the wind had no experimental basis and ..his abstract speculations brought more shame than honor to mathematics. "After one has read his paper, one knows no more about the wind than he did before." * Thomas L. Hankins, Jean d'Alembert: science and the Englightenment; pg 3

1784 The idea that Benjamin Franklin preferred the turkey as the national bird of the United States comes from a letter he wrote to his daughter Sarah Bache on January 26, 1784, criticizing the choice of the Bald Eagle as the national bird and suggesting that a turkey would have made a better alternative. This letter to Franklin's daughter was written after Congress had spent six years choosing the eagle as the emblem of the newly formed country. Franklin's disapproval of the choice of the Bald Eagle appears evident, but may have been made with mock indignation, since it is not apparent that he ever officially advocated the use of the turkey as a national emblem. *Wik

1802 Congress passed an act calling for a library to be established within the U. S. Capitol. The collection was the forerunner of the Library of Congress. *VFR

1946: The 1st astronomical radio interferometer observation was made by Ruby-Payne Scott * David Dickinson@Astroguyz

1949, the Hale telescope at Palomar Observatory sees first light under the direction of Edwin Hubble *Yovista

1952 EDVAC demonstrated. John Von Neumann was instrumental in designing this machine, which used the stored program concept. *VFR @rmathematicus disagrees and Tweets, " One of the biggest myths in comp hist. JvN only analyzed the design created by others, principally Eckert & Mauchly."

1963 France issued a stamp picturing the bathyscaph “Archimede.” Do you know why this name is appropriate? [Scott #1052] *VFR (image at top) On 15 July 1962, Archimede descended to 31,350 feet (9,560 m) into the Kurile-Kamchatcha Trench, making it the second deepest dive ever, at that point in time.

1984 The Fredkin Foundation announced it will award a prize of $100,000 for the first major mathematical discovery made by a computer. [News release at the Louisville AMS meeting] *VFR (Fredkin Foundation was established by Edward Fredkin, an artificial-intelligence expert at MIT. They offered another large prize for the first computer program which could defeat a Chess Grand Master)

1997 Electronic vs. Paper Books in S.F. Library
The New York Times chronicles the debate between electronic and paper books in an article about the new San Francisco public library. Critics complained that the library sacrificed too much book space for computer terminals and too many books for online information, lamenting as well the end of the traditional card catalogue that has marked a move to the information age for many libraries.*CHM (Twenty-five years later such discussions continue as Kindle and on-line texts start to replace traditional paper.)

2015 Asteroid 2004 BL86 will make a close pass by the earth on this night. Although there’s no danger of impact, this one is huge; twice as big as a cruise ship! It will be the closest of any known space rock this large until asteroid 1999 AN10 flies past Earth in 2027. A telescope of the Lincoln Near-Earth Asteroid Research (LINEAR) survey in White Sands, New Mexico initially discovered asteroid 2004 BL86 on January 30, 2004. *http://earthsky.org

BIRTHS
1862 Eliakim Hastings Moore (January 26, 1862 – December 30, 1932) was an American mathematician. He discovered mathematics through a summer job at the Cincinnati Observatory while in high school. When the University of Chicago opened its doors in 1892, Moore was the first head of its mathematics department, a position he retained until his death in 1931. His first two colleagues were Bolza and Maschke. The resulting department was the second research-oriented mathematics department in American history, after Johns Hopkins University.
Moore first worked in abstract algebra, proving in 1893 the classification of the structure of finite fields (also called Galois fields). Around 1900, he began working on the foundations of geometry. He reformulated Hilbert's axioms for geometry so that points were the only primitive notion, thus turning Hilbert's primitive lines and planes into defined notions. In 1902, he further showed that one of Hilbert's axioms for geometry was redundant. Independently, the twenty year old R.L. Moore (no relation) also proved this, but in a more elegant fashion than E. H. Moore used. When E. H. Moore heard of the feat, he arranged for a scholarship that would allow R.L. Moore to study for a doctorate at Chicago. E.H. Moore's work on axiom systems is considered one of the starting points for metamathematics and model theory. After 1906, he turned to the foundations of analysis. The concept of closure operator first appeared in his 1910 Introduction to a form of general analysis. He also wrote on algebraic geometry, number theory, and integral equations.
At Chicago, Moore supervised 31 doctoral dissertations, including those of George Birkhoff, Leonard Dickson, Robert Lee Moore (no relation), and Oswald Veblen. Birkhoff and Veblen went on to forge and lead the first-rate departments at Harvard and Princeton, respectively. Dickson became the first great American algebraist and number theorist. Robert Moore founded American topology. According to the Mathematics Genealogy Project, as of January 2011, E. H. Moore had over 14,900 known "descendants."
Moore convinced the New York Mathematical Society to change its name to the American Mathematical Society, whose Chicago branch he led. He presided over the AMS, 1901–02, and edited the Transactions of the American Mathematical Society, 1899–1907. He was elected to the National Academy of Sciences, the American Academy of Arts and Sciences, and the American Philosophical Society.
The American Mathematical Society established a prize in his honor in 2002. *Wik

1911 Polykarp Kusch (26 Jan 1911; 20 Mar 1993) German-American physicist who shared the Nobel Prize for Physics in 1955 for his accurate determination that the magnetic moment of the electron is greater than its theoretical value. This he deduced from researching the hyperfine structure of the energy levels in certain elements, and in 1947 found a discrepancy of about 0.1% between the observed value and that predicted by theory. Although minute, this anomaly was of great significance and led to revised theories about the interactions of electrons with electromagnetic radiation, now known as quantum electrodynamics. (He shared the prize with Willis E. Lamb, Jr. who performed independent but related experiments at Columbia University on the hyperfine structure of the hydrogen atom.)*TIS

1945 John Henry Coates, FRS (born 26 January 1945) is a mathematician who holds (since 1986) the position of Sadleirian Professor of Pure Mathematics at the University of Cambridge in the United Kingdom. He was elected a fellow of the Royal Society of London in 1985, and was President of the London Mathematical Society from 1988 to 1990. The latter organisation awarded him the Senior Whitehead Prize in 1997, for "his fundamental research in number theory and for his many contributions to mathematical life both in the UK and internationally".
Since 1986 Coates has worked in the Department of Pure Mathematics and Mathematical Statistics (DPMMS) of the University of Cambridge. In the last ten years he has focused on the study of various aspects of non-commutative Iwasawa theory, for instance, the study of the arithmetic of elliptic curves in nonabelian infinite extensions.*Wik


DEATHS
1630 Henry Briggs (Feb ? 1561, 26 Jan 1630) English mathematician who constructed the decimal-based common (Briggsian) logarithms that use base 10, and popularized them in Europe. John Napier had already introduced “natural” logarithms (1614) that use the base e (2.71...) [I think this is an error. Napier's log tables were not base e, nor any other particular base as they produced smaller log values for larger numbers, with log(107=0.]. Briggs visited Napier in 1616, and they agreed on the merit of using base 10. By 1624, Briggs had calculated logarithm tables to 14 decimal places, published in Arithmetica Logarithmica. These tables vastly simplified the task of mathematicians, astronomers and other scientists making otherwise long and tedious calculations. Briggs was professor of astronomy at Oxford from 1619. He is also credited with developing the modern method of long division. Briggs was strongly opposed to astrology, at a time when it was otherwise widely accepted by many scholars, including Napier. *TIS A story is told that when Briggs first journeyed to Scotland to meet Napier, after he was shown into the room they stood in silence for almost a quarter of an hour, "each beholding the other with admiration".

1697  Georg Mohr, (April 1, 1640 – January 26, 1697) (also Jorgen)Danish mathematician His only original contribution to geometry was the proof that any geometric construction which can be done with compass and straightedge can also be done with compasses alone, a result now known as the ohr–Mascheroni theorem. He published his proof in the book Euclides Danicus, Amsterdam, 1672.

1721 Pierre-Daniel Huet (8 Feb 1630, 26 Jan 1721) French scholar, antiquary, scientist, and bishop whose incisive skepticism, particularly as embodied in his cogent attacks on René Descartes, greatly influenced contemporary philosophers. Huet wrote a number of philosophical works that asserted the fallibility of human reason in addition to scientific work in the fields of astronomy, anatomy, and mathematics. *TIS

1895 Arthur Cayley (16 Aug 1821, 26 Jan 1895)English mathematician who played a leading role in founding the modern British school of pure mathematics. He trained first as a lawyer, and from 1849, spent 14 years at the bar, during which time he maintained an interest in mathematics and published about 250 mathematical papers. In 1863, Cayley followed his passion and commenced a new career as professor of Pure Mathematics at Cambridge and during his tenure published 900 papers and notes covering nearly every aspect of modern mathematics. The legacy of his work in n-dimensional geometry was later applied in physics to the study of the space-time continuum. His work on matrices served as a foundation for quantum mechanics developed by Werner Heisenberg in 1925.*TIS Cayley died, at age 74, after a long illness that he bore with courage and resignation. He continued his creative activity up to the week of his death. *VFR

1929 Constantin Marie Le Paige (9 March 1852 in Liège, Belgium - 26 Jan 1929 in Liège, Belgium) worked on the theory of algebraic forms, a topic whose study was initiated by Boole in 1841 and then developed by Cayley, Sylvester, Hermite, Clebsch and Aronhold. In particular Le Paige studied the geometry of algebraic curves and surfaces, building on this earlier work. He is best known for his construction of a cubic surface given by 19 points.
Le Paige studied the generation of plane cubic and quartic curves, developing further Chasles's work on plane algebraic curves and Steiner's results on the intersection of two projective pencils.
The history of mathematics was another topic which interested Le Paige. He published Sluze's correspondence with Pascal, Huygens, Oldenburg and Wallis. *SAU

1942 Felix Hausdorff (8 Nov 1868 in Breslau, Germany (now Wrocław, Poland)
- 26 Jan 1942 in Bonn, Germany) worked in topology creating a theory of topological and metric spaces. He also worked in set theory and introduced the concept of a partially ordered set.
As a Jew his position became more and more difficult. In 1941 he was scheduled to go to an internment camp but managed to avoid being sent.
Bonn University requested that the Hausdorffs be allowed to remain in their home and this was granted. By October 1941 they were forced to wear the "yellow star" and around the end of the year they were informed that they would be sent to Cologne.
They were not sent to Cologne but in January 1942 they were informed that they were to be interned in Endenich. Together with his wife and his wife's sister, he committed suicide on 26 January. He wrote to a friend on Sunday 25 January:
Dear Friend Wollstein
By the time you receive these lines, we three will have solved the problem in another way - in the way which you have continually attempted to dissuade us. ...
What has been done against the Jews in recent months arouses well-founded anxiety that we will no longer be allowed to experience a bearable situation. ...
Forgive us, that we still cause you trouble beyond death; I am convinced that you will do what you are able to do (and which perhaps is not very much). Forgive us also our desertion! We wish you and all our friends will experience better times
Yours faithfully
Felix Hausdorff
On the night of Sunday 25 January all three took barbiturates. Both Hausdorff and his wife Charlotte were dead by the morning of the 26 January. Edith, Charlotte's sister, survived for a few days in a coma before dying. *SAU

1952 James Ireland Craig (24 Feb 1868 in Buckhaven, Fife, Scotland - 26 Jan 1952 in Cairo, Egypt) graduated from Edinburgh and Cambridge. He taught at Eton and Winchester and then went to work on the Nile Survey for the Egyptian government. He made some significant inventions in map projections. He was killed when a mob attacked the Turf Club in Cairo.*SAU

2007 Gregory Maxwell Kelly (5 June 1930 in Bondi, New South Wales, Australia - 26 Jan 2007 in Sydney, Australia) founded the thriving Australian school of category theory. With Samuel Eilenberg he formalized and developed the notion of an enriched category based on intuitions then in the air about making the homsets of a category just as abstract as the objects themselves. He subsequently developed the notion in considerably more detail in his 1981 monograph Basic Concepts of Enriched Category Theory. The explicitly foundational role of the category Set in his treatment is noteworthy in view of the folk intuition that enriched categories liberate category theory from the last vestiges of Set as the codomain of the ordinary external hom-functor.
In 1967 Kelly was appointed Professor of Pure Mathematics at the University of New South Wales. In 1972 he was elected a Fellow of the Australian Academy of Science. He returned to the University of Sydney in 1973, serving as Professor of Mathematics until his retirement in 1994. In 2001 he was awarded the Australian government's Centenary Medal. He continued to participate in the department as Professorial Fellow and Professor Emeritus until his death at age 76.
Kelly worked on many other aspects of category theory besides enriched categories, both individually and in a number of fruitful collaborations. His Ph.D. student Ross Street is himself a noted category theorist and early contributor to the Australian category theory school.*Wik


Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell