Can you guess what joke about Topology this was supposed to represent? |
The 'control of nature' is a phrase conceived in arrogance, born of the Neanderthal age of biology and the convenience of man.
~Rachel Carson
The 104th day of the year; 104 is the smallest known number of unit line segments that can exist in the plane, 4 touching at every vertex. *What's Special About Number
HT Jesse Hammer |
104 is the sum of eight consecutive even numbers, 104 = 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20
Douglas W Boone noted that "_Every_ odd multiple of eight greater than 56 is the sum of eight consecutive positive even numbers. (The smallest sum of eight consecutive positive even numbers is 72 = 2+4+6+8+10+12+14+16.) Allowing zero and negative numbers, every odd multiple of eight, period, is the sum of eight consecutive even numbers. The _even_ multiples of eight (that is, multiples of sixteen) are the sum of eight consecutive _odd_ numbers."
The reversal of 104 is a prime, 401. It is the largest year day that has a prime reversal that is too large to be a year date
13 straight lines through an annulus can produce a maximum of 104 pieces (students might try to create the maximum for smaller numbers of lines, the sequence is 2, 5, 9, 14, 20,... https://oeis.org/A000096 the differences give a clue to the complete pattern.)
Douglas W Boone pointed out that The formula for the number of pieces can be stated as (n^2 + 3n)/2, or (1/2) × n × (n+3), which is an integer for integral n; exactly one of n and n+3 will be even, i.e. divisible by 2.(Students might like another way involving the counting numbers.)
There are 588939451 "left and right" truncatable primes (truncate the two outside digits at once) with an even number of digits. The largest is the 104-digited prime number 91617596742869619884432721391145374777686825634291523771171391111313737919133977331737137933773713713973.
Just introduced to these by a comment from William Gosnell, thanks. sum of number and cube of its digits is a square.(wonder if there are other power sums?)
104+1^3+0^3+4^3 = 13^2 . There is another smaller year day with this property, (Hint, it is prime),
but wait..104 + 1^2 + 0^2 + 4^2 = 11^2 Don't you wonder if there are more like this?
Japanese Route 104 ran from Hachinohe, near my former home in Misawa, Japan on the Pacific, to go across the mountains to Noshiro on the Sea of Japan in Akita prefecture. One of the better places to find the prized 36 inch green glass fishing floats washed up along the coast. (perhaps no more, almost all plastic in last two decades)
*************** Lots of additional math facts for days 91-120 at https://mathdaypballew.blogspot.com/
1129 Chinese accounts state “there was a Black spot within the Sun” on March 22, 1129, which “died away” on April 14th. This may well have been one of the sunspots John of Worcester had observed 104 days earlier (8 December, 1128), on the other side of the world. Worcester's observation prompted the earliest known drawing of sunspots, which appear in his Chronicle recorded in 1128. *Joe Hanson, itsokaytobesmart.com
The first sunspot drawing, John of Worcester around 1128 *Wik |
At sunrise on the 14th April 1561, the citizens of Nuremberg beheld "A very frightful spectacle." The sky appeared to fill with cylindrical objects from which red, black, orange and blue white disks and globes emerged. Crosses and tubes resembling cannon barrels also appeared whereupon the objects promptly "began to fight one another." This event is depicted in a famous 16th century woodcut by Hans Glaser.
*UFO Evidence Org
1611 Galileo (1564 1642) visited Rome at the height of his fame and was made the sixth member of the Accademia dei Lincei (Lynx Society) at a banquet on 14 Apr. The word 'telescopium' was first applied to his instrument at this dinner. He showed sunspots to several people. The term “telescope” was introduced by Prince Federico Cesi at a banquet given in Galileo’s honor. It derives from the Greek “tele” meaning “far away” and “skop´eo” meaning “to look intently.” For a change, a term which derives from the Greek was actually coined by a Greek, namely Ioannes Demisiani. [Willy Ley, Watchers of the Skies, p. 112]*VFR Thony Christie at the Renaissance Mathematicus blog has an enjoyable review of the telescope and how it got its name. This account of he events that evening by Girolamo Sirtori was published in his Telescopium, printed in 1618 but written in 1612. "I went to Rome... Galileo was there with his unforgettable telescope. By chance, on a certain day, Prince Federico Cesi,Marquis of Monticello, a learned man and benefactor of the sciences, had invited him [Galil eo] to dinner... Before sunset... they began to look through the telescope at the inscription of
1685 It's easy for students of Math History to get the impression that John Wallis was totally immersed in mathematics, but a perusal of his writing on religion, or his many varied contributions to the Royal Society paint the picture of a polymath.
“A Relation Concerning the Late Earthquake Neer Oxford: Together with Some Observations of the Sealed Weatherglass, and the Barometer Both upon That Phænomenon, and in General,” Phil Trans 1 (1665-1666):This is almost certainly concerning the earthquake of 6 Oct, 1683 at Derbyshire. This earthquake also has the distinction of being the first British earthquake surveyed by the British Geological Survey.
166-171; Wallis, “A Discourse concerning the Air’s Gravity, Observd in the Baroscope, Occasioned by That of Dr. Garden: Presented to the Phil. Soc. of Oxford, by the Reverend Dr. Wallis, President of That Society. April, 14, 1685,” Phil Trans 15 (1685): 1002-1014; WC II, 282; WC III, 281-287.
1760 Four years after leaving the coal pits near Newcastle, 22 year old Charles Hutton advertises the opening of his private school.
1822 In a letter to Gauss, Bessell recommends his student, Heinrich Ferdinand Scherk. Gauss considered Scherk one of the best students he ever had. Scherk would go on to great educational success and Kummer was one of his students. * Dunnington, Gray, & Dohse , Carl Friedrich Gauss: Titan of Science
1855 The first chess problem of Sam Loyd, age fourteen, was published in the New York Saturday Courier. Within a few years he was recognized as the nation’s foremost composer of chess problems. Once he announced that he had discovered a way to mate a lone king in the center of the board with a knight and two rooks. Readers were first furious, afterwards amused, by his preposterous solution: line them up in the order knight, rook, king, rook. [Mathematical Puzzles of Sam Loyd, edited by Martin Gardner, Dover 1959, p. xi-xii]
1860 A printed article on the Four Color theorem (perhaps only the second public statement about it, see June 10, 1854) was printed on this date and spread knowledge of the problem to America. In the unusual form of an Atheaneum book review of The Philosophy of Discovery by William Whewell, the unsigned, but almost surely written by DeMorgan, review launched in to a discussion of the Four Color problem. The review treats the four color necessity as obvious to cartographers, and makes no mention of either Guthrie, since he most surely knew the mathematical community in England were aware of his contribution from DeMorgan's own letters.
The review of Whewell's book came to the attention of American Philosopher/Logician C. S. Peirce, son of Harvard Professor Benjamin Peirce, and became a lifelong fascination. He immediately crafted a proof, which is still unknown, to my knowledge. He wrote later that it had been the Atheanenum review which first ignited his interest, and that his own proof was never printed. Shortly before DeMorgan's death in 1871, he was visited by Peirce, but no record is known of what they talked.
Letter of De Morgan to Hamilton, 23 Oct. 1852 |
1914 Ramanujan boarded the S.S. Nevasa on 17 March 1914, and at 10 o'clock in the morning, the ship departed from Madras. He arrived in London on 14 April, with E. H. Neville waiting for him with a car. I received a tweet from @amanicdroid who pointed out that, "this was significant for him culturally as a high-caste Hindu as crossing the ocean was taboo. "
1931 The first issue of the review journal Zentralblatt f¨ur Mathematik was published by Springer. Otto Neugebauer, then a young professor at G¨ottingen, conceived the idea of a journal that would publish the reviews of articles as soon as possible after the papers had appeared and persuaded the publishing house of J. Springer to publish such a journal. The first issue of Zentralblatt f¨ur Mathematik und ihre Grenzgebiete, as the new journal was called, dated April 14, 1931, had Neugebauer as its editor. It also had a very distinguished and international editorial committee (consisting of P. Alexandroff, J. Bartels, W. Blaschke, R. Courant, H. Hahn, G. H. Hardy, F. Hund, G. Julia, O. Kellogg, H. Kienle, T.Levi-Civita, R. Nevanlinna, H. Thirring and B. L. van der Waerden). The first volume consisted of seven issues plus an index, in 466 pages. (The very first item reviewed was the second edition
of Methoden der mathematischen Physik, by Courant and Hilbert.) The classification system used was very similar to the scheme used by Jahrbuch.
Mathematical Reviews. Zentralblatt flourished under Neugebauer’s direction and became the primary reviewing journal in mathematics. Jahrbuch valiantly continued until issue number 4 of its Volume 68, for the year 1942, ceasing publication in mid-1944, but it had already lost its prominence in the research community. But, just as WorldWar I damaged Jahrbuch, serious harm was done to Zentralblatt soon after its founding by political conditions beyond its control. The anti-Semitic and anti-Soviet policies of the Nazi regime generated pressures on the editorial policies of Zentralblatt concerning the use of Jewish and Russian reviewers. Although Neugebauer left G¨ottingen for the University of Copenhagen in 1934, he had continued to edit Zentralblatt. But by 1938 the intrusion of politics had become intolerable and he and other members of the editorial board resigned. Despite these difficulties Zentralblatt continued its operation and, except for a brief suspension of publication from November 1944 until June 1948, has continued to publish to the present day.
The Chinese government launches widespread efforts to purge governmental agencies of illegally copied software, a practice that had been costing U.S. software publishers millions of dollars. The plan calls for allotting more money to purchase software while giving an enforcement agency the power to prosecute anyone bootlegging software. The announcement follows a March meeting at which China had signed an accord with the United States vowing to crackdown on piracy.*CHM
2014 Almost exactly a year after Yitang Zhang announced a proof (see April 17) that there are infinitely many pairs of prime numbers which differ by 70 million or less Terrance Tao's online group attack on the problem reduced the number to 243. Zhang's proof is the first to establish the existence of a finite bound for prime gaps, resolving a weak form of the twin prime conjecture.
2014 A total Lunar eclipse visible in most of North and South America occurred on this night. The total eclipse began around 3am EDT and last for about 80 minutes. More information is here. *Michael Zeiler
*Wik |
*Ortelius by Peter Paul Rubens |
1898 Harold Stephen Black (14 Apr 1898; 11 Dec 1983 at age 85) American electrical engineer who discovered and developed the negative-feedback principle, in which amplification output is fed back into the input, thus producing nearly distortionless and steady amplification. In 1921, Black joined the forerunner of Bell Labs, in New York City, working on elimination of distortion. After six years of persistence, Black conceived his negative feedback amplifier in a flash commuting to work aboard the ferry. Basically, the concept involved feeding systems output back to the input as a method of system control. The principle has found widespread applications in electronics, including industrial, military, and consumer electronics, weaponry, analog computers, and such biomechanical devices as pacemakers. *TIS
Born as Rudolf Maximilian Höll in Selmecbánya, Kingdom of Hungary (present-day Banská Štiavnica, Slovakia)., but later changed his surname to Hell. He was the third son from the second marriage of his father Matthias Cornelius Hell (Matthäus Kornelius Hell) and his mother Julianna Staindl. The couple had a total of 22 children. Registry entries indicate that the family was of German descent, while Maximilian Hell later in life (ca 1750) is known to declare himself as Hungarian.
Hell became the director of the Vienna Observatory in 1756. He published the astronomical tables Ephemerides astronomicae ad meridianum Vindobonemsem ("Ephemerides for the Meridian of Vienna"). He and his assistant János Sajnovics went to Vardø in the far north of Norway (then part of Denmark-Norway) to observe the 1769 transit of Venus. He was elected as a foreign member of the Royal Danish Academy of Sciences and Letters on October 13, 1769. This society also funded the publication of his 1770 account of the Venus passage Observatio transitus Veneris ante discum Solis die 3. Junii anno 1769 (Copenhagen, 1770).
There was some controversy about Hell's observations of the transit of Venus because he stayed in Norway for eight months, collecting non-astronomical scientific data about the arctic regions for a planned encyclopedia (which never appeared, in part due to the suppression of the Jesuit order). The publication of his results was delayed, and some (notably Joseph Johann Littrow) accused Hell posthumously of falsifying his results. However, Simon Newcomb carefully studied Hell's notebooks and exonerated him a century after his death in Vienna.
Besides astronomy, Hell also had an interest in magnet therapy (the alleged healing power of magnets), although it was Franz Anton Mesmer who went further with this and received most of the credit.
In 1771, Hell was elected a foreign member of the Royal Swedish Academy of Sciences.
The crater Hell on the Moon is named after him. *Wik
1935 Amalie Emmy Noether (23 Mar 1882, 14 Apr 1935 at age 53) was a German mathematician best known for her contributions to abstract algebra, in particular, her study of chain conditions on ideals of rings. In theoretical physics, she produced Noether's Theorem, which proves a relationship between symmetries in physics and conservation principles. This basic result in the general theory of relativity was praised by Einstein. It was her work in the theory of invariants which led to formulations for several concepts of Einstein's general theory of relativity. For her obituary in The New York Times, Albert Einstein wrote: “Fraulein Noether was the most significant mathematical genius thus far produced since the higher education of women began.”*TIS Emmy Noether’s house in Erlangen
Afanasyeva was born in Kiev, Ukraine, then part of the Russian Empire. After her father died she was brought up by an uncle in St Petersburg, Russia, where she attended a women's pedagogical school and a Women's College. In 1902 she transferred to Göttingen, where she met Ehrenfest. The couple got married in 1904, and in 1907 they returned to St Petersburg. In 1912 they moved to Leiden, where Paul Ehrenfest was appointed to succeed H.A. Lorentz as professor at the University of Leiden.
Tatyana collaborated closely with her husband, most famously on their classic review of the statistical mechanics of Boltzmann. She published many papers on various topics such as randomness and entropy, and teaching geometry to children. *Wik
1964 Rachel Louise Carson (27 May 1907, 14 Apr 1964 at age 56) was an American marine biologist, conservationist and writer well known for her writings on environmental pollution and the natural history of the sea. Embedded within all of Carson's writing was the view that human beings were but one part of nature distinguished primarily by their power to alter it, in some cases irreversibly. Disturbed by the profligate use of synthetic chemical pesticides after World War II, Carson reluctantly changed her focus in order to warn the public about the long term effects of misusing these chemicals.
1928 Errett Albert Bishop (July 10, 1928 – April 14, 1983) (His) work is so wide ranging that it is difficult to give an overview in a biography such as this. Let us look at the book Selected papers which was published in 1986 and reprints some of Bishop's most significant contributions. The book divided Bishop's papers into five categories:
(1) Polynomial and rational approximation. Examples are extensions of Mergelyan's approximation theorem and the theorem of Frigyes Riesz and Marcel Riesz concerning measures on the unit circle orthogonal to polynomials. Bishop found new methods in dealing with these problems;
(2) The general theory of function algebras. Here Bishop worked on uniform algebras (commutative Banach algebras with unit whose norms are the spectral norms) proving results such as antisymmetric decomposition of a uniform algebra, the Bishop-DeLeeuw theorem, and the proof of existence of Jensen measures. In 1965 Bishop wrote an excellent survey Uniform algebras examining the interaction between the theory of uniform algebras and that of several complex variables.
(3) Banach spaces and operator theory. An examples of a paper by Bishop on this topic is Spectral theory for operators on a Banach space (1957). He introduced the condition now called the Bishop condition which turned out to be very useful in the theory of decomposable operators.
(4) Several complex variables. Examples of Bishop's papers in this area are Analyticity in certain Banach spaces (1962). He proved important results in this area such as the biholomorphic embedding theorem for a Stein manifold as a closed submanifold in Cn, and a new proof of Remmert's proper mapping theorem.
(5) Constructive mathematics. Bishop become interested in foundational issues around 1964, about the time he was at the Miller Institute. He wrote a famous text Foundations of constructive analysis (1967) which aimed to show that a constructive treatment of analysis is feasible.*SAU
2005 Saunders Mac Lane (4 August 1909 – 14 April 2005) was an American mathematician who co-founded category theory with Samuel Eilenberg.
After a thesis in mathematical logic, his early work was in field theory and valuation theory. He wrote on valuation rings and Witt vectors, and separability in infinite field extensions. He started writing on group extensions in 1942, and in 1943 began his research on what are now called Eilenberg–MacLane spaces K(G,n), having a single non-trivial homotopy group G in dimension n. This work opened the way to group cohomology in general.
After introducing, via the Eilenberg–Steenrod axioms, the abstract approach to homology theory, he and Eilenberg originated category theory in 1945. He is especially known for his work on coherence theorems. A recurring feature of category theory, abstract algebra, and of some other mathematics as well, is the use of diagrams, consisting of arrows (morphisms) linking objects, such as products and coproducts. According to McLarty (2005), this diagrammatic approach to contemporary mathematics largely stems from Mac Lane (1948). Mac Lane also coined the term Yoneda lemma for a lemma which is an essential background to many central concepts of category theory and which was discovered by Nobuo Yoneda.
Mac Lane had an exemplary devotion to writing approachable texts, starting with his very influential A Survey of Modern Algebra, coauthored in 1941 with Garrett Birkhoff. From then on, it was possible to teach elementary modern algebra to undergraduates using an English text. His Categories for the Working Mathematician remains the definitive introduction to category theory.
Mac Lane supervised the Ph.Ds of, among many others, David Eisenbud, William Howard, Irving Kaplansky, Michael Morley, Anil Nerode, Robert Solovay, and John G. Thompson.
Mac Lane and Samuel Eilenberg at a conference in July 1992
Credits :
*CHM=Computer History Museum
*FFF=Kane, Famous First Facts
*NSEC= NASA Solar Eclipse Calendar
*RMAT= The Renaissance Mathematicus, Thony Christie
*SAU=St Andrews Univ. Math History
*TIA = Today in Astronomy
*TIS= Today in Science History
*VFR = V Frederick Rickey, USMA
*Wik = Wikipedia
*WM = Women of Mathematics, Grinstein & Campbell
No comments:
Post a Comment